In the title compound, CHClN, the dihedral angle between the aromatic rings is 50.09 (9)°. The central -N=N- unit shows an configuration. In the crystal, C-H⋯N inter-actions, C-Cl⋯π and π-π stacking inter-actions [centroid-to-centroid distance = 3.7719 (14) Å] link the mol-ecules, forming mol-ecular layers approximately parallel to the (002) plane. Additional weak van der Waals inter-actions between the layers consolidate the three-dimensional packing. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (33.6%), N⋯H/ H⋯N (17.2%), Cl⋯H/H⋯Cl (14.1%) and C⋯H/H⋯C (14.1%) contacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491520PMC
http://dx.doi.org/10.1107/S2056989021009154DOI Listing

Publication Analysis

Top Keywords

hirshfeld surface
8
surface analysis
8
crystal structure
4
structure hirshfeld
4
analysis -4-{22-di-chloro-1-[4-di-methyl-amino-phen-yl]ethenyl}diazen-ylbenzo-nitrile
4
-4-{22-di-chloro-1-[4-di-methyl-amino-phen-yl]ethenyl}diazen-ylbenzo-nitrile title
4
title compound
4
compound chcln
4
chcln dihedral
4
dihedral angle
4

Similar Publications

In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.

View Article and Find Full Text PDF

γ- and δ-lactones were formed by bromine oxidation of commercially available D-lyxose, as confirmed by IR analysis. The former was isolated, and its structure was confirmed by NMR spectra and X-ray analysis. In this structure, the presence of both intermolecular and intramolecular hydrogen bonds was found.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

In this work, we present the synthesis, solid-state characterization, and studies of two pyrazole derivatives: 5-(2-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (I) and 5-(4-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (II). The molecular crystal properties, in terms of intermolecular hydrogen bonds and other weak interactions, are analyzed using single crystal X-ray diffraction. The Hirshfeld surfaces computational method is used to quantify the intermolecular interactions, density functional theory for theoretical structural optimization, and its comparison with the experimental structure and studies using docking and molecular dynamics studies of I and II with CDC7-kinase.

View Article and Find Full Text PDF

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!