Selective crystallization vibrational strong coupling.

Chem Sci

Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University North 20 West 10, Kita Ward Sapporo Hokkaido Japan

Published: September 2021

The coupling of (photo)chemical processes to optical cavity vacuum fields is an emerging method for modulating molecular and material properties. Recent reports have shown that strong coupling of the vibrational modes of solvents to cavity vacuum fields can influence the chemical reaction kinetics of dissolved solutes. This suggests that vibrational strong coupling might also effect other important solution-based processes, such as crystallization from solution. Here we test this hitherto unexplored notion, investigating pseudopolymorphism in the crystallization from water of ZIF metal-organic frameworks inside optical microcavities. We find that ZIF-8 crystals are selectively obtained from solution inside optical microcavities, where the OH stretching vibration of water is strongly coupled to cavity vacuum fields, whereas mixtures of ZIF-8 and ZIF-L are obtained otherwise. Moreover, ZIF crystallization is accelerated by solvent vibrational strong coupling. This work suggests that cavity vacuum fields might become a tool for materials synthesis, biasing molecular self-assembly and driving macroscopic material outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457383PMC
http://dx.doi.org/10.1039/d1sc03706dDOI Listing

Publication Analysis

Top Keywords

strong coupling
16
cavity vacuum
16
vacuum fields
16
vibrational strong
12
inside optical
8
optical microcavities
8
coupling
5
selective crystallization
4
vibrational
4
crystallization vibrational
4

Similar Publications

Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load.

View Article and Find Full Text PDF

This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.

View Article and Find Full Text PDF

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

Objectives: Schistosomiasis (SCH) remains a public health challenge in Rwanda despite ongoing interventions. This paper provides an overview of Rwanda's SCH journey, highlighting progress made through mass drug administration (MDA), diagnostic advancements, and strategic partnerships with key stakeholders.

Methods: Since 2014, the point-of-care circulating cathodic antigen (POC-CCA) test has been introduced alongside Kato-Katz (KK), improving mapping accuracy and detecting low-intensity infections.

View Article and Find Full Text PDF

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!