AI Article Synopsis

  • Postmortem studies indicate that individuals with Autism Spectrum Disorder (ASD) have an increased density of excitatory synapses in their brains, which may be linked to issues with mTOR-dependent synaptic pruning.* -
  • Using advanced techniques like resting-state fMRI and studies in mice, researchers found that increased synapse density leads to ASD-like behaviors and abnormal brain connectivity, which can be reversed by inhibiting mTOR.* -
  • The study also revealed that children with idiopathic ASD show similar connectivity patterns and identified a distinct genetic signature associated with mTOR in a subgroup of these children, suggesting a specific subtype of autism.*

Article Abstract

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526836PMC
http://dx.doi.org/10.1038/s41467-021-26131-zDOI Listing

Publication Analysis

Top Keywords

mtor-related synaptic
8
synaptic pathology
8
autism spectrum
8
functional hyperconnectivity
8
functional connectivity
8
autism
5
asd
5
pathology autism
4
spectrum disorder-associated
4
functional
4

Similar Publications

There is growing evidence of a strong association between SARS-CoV-2 and cancer prognosis and treatment outcome. However, there are no reliable SARS-CoV-2 assessment models to accurately predict prognostic and therapeutic effects in acute myeloid leukemia (AML). Here, differentially expressed genes associated with SARS-CoV-2 were detected, and multiple Cox regression methods were used to construct a SARS-CoV-2 risk index (SC2RI).

View Article and Find Full Text PDF

Protein interaction network analysis of mTOR signaling reveals modular organization.

J Biol Chem

November 2023

Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA. Electronic address:

The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (phosphoinositide 3-kinases), protein kinases (AKT), and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex coimmunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation, and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (PI3Ks), protein kinases (AKT) and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex co-immunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins.

View Article and Find Full Text PDF

Bipolar disorder (BPD) is a severe mental illness characterized by episodes of depression and mania. To investigate the molecular mechanisms underlying the pathophysiology of bipolar disorder, we performed transcriptome studies using RNA-seq data from the prefrontal cortex (PFC) of individuals with BPD and matched controls, as well as data from cell culture and animal model studies. We found 879 differentially expressed genes that were also replicated in an independent cohort of post-mortem samples.

View Article and Find Full Text PDF

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: