Respiratory viruses are transmitted via respiratory particles that are emitted when people breath, speak, cough, or sneeze. These particles span the size spectrum from visible droplets to airborne particles of hundreds of nanometers. Barrier face coverings ("cloth masks") and surgical masks are loose-fitting and provide limited protection from airborne particles since air passes around the edges of the mask as well as through the filtering material. Respirators, which fit tightly to the face, provide more effective respiratory protection. Although healthcare workers have relied primarily on disposable filtering facepiece respirators (such as N95) during the COVID-19 pandemic, reusable elastomeric respirators have significant potential advantages for the COVID-19 and future respiratory virus pandemics. However, currently available elastomeric respirators were not designed primarily for healthcare or pandemic use and require further development to improve their suitability for this application. The authors believe that the development, implementation, and stockpiling of improved elastomeric respirators should be an international public health priority.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000004005DOI Listing

Publication Analysis

Top Keywords

elastomeric respirators
16
respiratory virus
8
airborne particles
8
respiratory
5
respirators
5
elastomeric
4
respirators covid-19
4
covid-19 respiratory
4
virus pandemic
4
pandemic essential
4

Similar Publications

Developing and overseeing Respiratory Protection Programs (RPPs) is crucial for ensuring effective respirator use among employees. To date, a gap exists in research that focuses on elastomeric half mask respirators (EHMRs) as the primary respirator in health delivery settings which would necessitate additional considerations in RPPs beyond the more common N95 filtering facepiece respirators. This paper presents lessons learned during a one-year impact evaluation with healthcare and first responder settings that received EHMRs from the Strategic National Stockpile in 2021 and 2022.

View Article and Find Full Text PDF

Background: During shortages, elastomeric half-mask respirators (EHMRs) are an alternative to reusing N95 filtering facepiece respirators but require between-use disinfection. The objectives of this study were to (a) measure microbial reductions on EHMR surfaces under laboratory conditions by a standardized procedure using wipes impregnated with health care disinfectants and to (b) measure microbial reductions on EHMRs disinfected by volunteer health care providers.

Method: We inoculated EHMR (Honeywell model RU8500) surfaces with spores, and bacteriophages MS2 and Φ6, and disinfected them using two wipes with hydrogen peroxide (HP), alcohols, and quaternary ammonium compounds (QACs).

View Article and Find Full Text PDF

Smart filtering facepiece respirator with self-adaptive fit and wireless humidity monitoring.

Biomaterials

March 2025

Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA. Electronic address:

The widespread emergence of airborne diseases has transformed our lifestyle, and respirators have become an essential part of daily life. Nevertheless, finding respirators that fit well can be challenging due to the variety of human facial sizes and shapes, potentially compromising protection. In addition, the current respirators do not inform the user of the air quality in case of continuous long-term use.

View Article and Find Full Text PDF

Background: New elastomeric half-mask respirator (EHMR) models without exhalation valves (EVs) or with exhalation valve filters (EVFs) are facilitating expanded use in health settings to reduce workers' exposure to airborne hazards while acting as source control to prevent pathogen spread. The physical comfort of new models has not been assessed in comparison to previously used EHMRs with EVs.

Methods: Researchers assessed 1,962 health care and emergency medical service personnels' self-reported adverse experiences from 2 cohorts while wearing EHMR models with EVs (cohort 1, n = 1,080) and without EVs or with EVFs (cohort 2, n = 882).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!