Introduction: Somatic mutations in the calreticulin (CALR) gene occur in most myeloproliferative neoplasm (MPN) patients who lack Janus kinase 2 or thrombopoietin receptor (MPL) mutations, but the molecular pathogenesis of MPN with mutated CALR is unclear, which limited the further treatment for CALR gene mutant patients.
Objectives: Previous studies showed that CALR mutations not only activated serine/threonine protein kinase (AKT) in primary mouse bone marrow cells but also mitogen-activated protein kinases (MAPKs) in MARIMO cells harboring a heterozygous 61-bp deletion in CALR exon 9, which were responsible for mutant CALR cell survival, respectively. Hence, we aimed to initially explore the mechanism of AKT activation and observe the synergistic inhibitory effect of combining AKT (MK-2206) and MAPK kinase (AZD 6244) inhibitors in MARIMO cells.
Methods: We detected the expression of phosphorylated AKT in MARIMO cells treated with inhibitors for 24 or 48 h by western blotting and analyzed cell proliferation, cell cycle, and apoptosis by flow cytometry. We further examined the synergistic inhibitory effect of combining MK-2206 and AZD 6244 in MARIMO cells using the median effect principle of Chou and Talalay.
Results: We found that the AKT was activated in MARIMO cells, and blocking its activity significantly inhibited MARIMO cell growth with downregulation of cyclin D and E, and accelerated cell apoptosis by decreasing Bcl-2 but increasing Bax and cleaved caspase-3 levels in a dose-dependent manner. Further analysis showed that AKT activation was dependent on mammalian target of rapamycin but not on the JAK signaling pathway in MARIMO cells, displaying that inhibition of JAK activity by ruxolitinib (RUX) did not decrease the AKT phosphorylation. Furthermore, the combination of MK-2206 and AZD 6244 produced a significantly synergistic inhibitory effect on MARIMO cells.
Conclusions: AKT activation is a feature of MARIMO cells and co-targeting of AKT and MAPKs signaling pathways synergistically inhibits MARIMO cell growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000518921 | DOI Listing |
Nagoya J Med Sci
May 2024
Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
We previously reported the Marimo cell line, which was established from the bone marrow cells of a patient with essential thrombocythemia (ET) at the last stage after transformation to acute myeloid leukemia (AML). This cell line is widely used for the biological analysis of ET because it harbors mutation. However, genetic processes during disease progression in the original patient were not analyzed.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.
The green alga often forms spherical aggregates called "marimo" in Lake Akan in Japan. In winter, marimo are exposed to low water temperatures at 1-4 °C but protected from strong sunlight by ice coverage, which may disappear due to global warming. In this study, photoinhibition in marimo was examined at 2 °C using chlorophyll fluorescence and 830 nm absorption.
View Article and Find Full Text PDFInt J Mol Sci
June 2022
Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, 2600 Glostrup, Denmark.
Myeloproliferative Neoplasms (MPNs) constitute a group of rare blood cancers that are characterized by mutations in bone marrow stem cells leading to the overproduction of erythrocytes, leukocytes, and thrombocytes. Mutations in () genes may initiate MPNs, causing a novel variable polybasic stretch terminating in a common C-terminal sequence in the frameshifted CRT (CRTfs) proteins. Peptide antibodies to the mutated C-terminal are important reagents for research in the molecular mechanisms of MPNs and for the development of new diagnostic assays and therapies.
View Article and Find Full Text PDFThe development of efficient fuel cells greatly promotes reducing the consumption of fossil energy, and it is crucial to enhance the platinum (Pt) catalytic activity by optimizing both the nanoparticle size and support effect. In this study, we generate a smaller and uniform size of naked Pt nanocluster (NC) catalysts a dry process in the gas phase, and using the direct powder embedded trapping method, the Pt NCs are supported on Marimo carbon (MC) that comprises a high density of carbon nanofilaments. At a minimum Pt loading of 0.
View Article and Find Full Text PDFIntroduction: Somatic mutations in the calreticulin (CALR) gene occur in most myeloproliferative neoplasm (MPN) patients who lack Janus kinase 2 or thrombopoietin receptor (MPL) mutations, but the molecular pathogenesis of MPN with mutated CALR is unclear, which limited the further treatment for CALR gene mutant patients.
Objectives: Previous studies showed that CALR mutations not only activated serine/threonine protein kinase (AKT) in primary mouse bone marrow cells but also mitogen-activated protein kinases (MAPKs) in MARIMO cells harboring a heterozygous 61-bp deletion in CALR exon 9, which were responsible for mutant CALR cell survival, respectively. Hence, we aimed to initially explore the mechanism of AKT activation and observe the synergistic inhibitory effect of combining AKT (MK-2206) and MAPK kinase (AZD 6244) inhibitors in MARIMO cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!