The peripersonal space (PPS) is a special portion of space immediately surrounding the body, where the integration between tactile stimuli delivered on the body and auditory or visual events emanating from the environment occurs. Interestingly, PPS can widen if a tool is employed to interact with objects in the far space. However, electrophysiological evidence of such tool-use dependent plasticity in the human brain is scarce. Here, in a series of three experiments, participants were asked to respond to tactile stimuli, delivered to their right hand, either in isolation (unimodal condition) or combined with auditory stimulation, which could occur near (bimodal-near) or far from the stimulated hand (bimodal-far). According to multisensory integration spatial rule, when bimodal stimuli are presented at the same location, we expected a response enhancement (response time - RT - facilitation and event-related potential - ERP - super-additivity). In Experiment 1, we verified that RT facilitation was driven by bimodal input spatial congruency, independently from auditory stimulus intensity. In Experiment 2, we showed that our bimodal task was effective in eliciting the magnification of ERPs in bimodal conditions, with significantly larger responses in the near as compared to far condition. In Experiment 3 (main experiment), we explored tool-use driven PPS plasticity. Our audio-tactile task was performed either following tool-use (a 20-min reaching task, performed using a 145 cm-long rake) or after a control cognitive training (a 20-min visual discrimination task) performed in the far space. Following the control training, faster RTs and greater super-additive ERPs were found in bimodal-near as compared to bimodal-far condition (replicating Experiment 2 results). Crucially, this far-near differential response was significantly reduced after tool-use. Altogether our results indicate a selective effect of tool-use remapping in extending the boundaries of PPS. The present finding might be considered as an electrophysiological evidence of tool-use dependent plasticity in the human brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2021.08.004DOI Listing

Publication Analysis

Top Keywords

electrophysiological evidence
12
task performed
12
peripersonal space
8
tactile stimuli
8
stimuli delivered
8
evidence tool-use
8
tool-use dependent
8
dependent plasticity
8
plasticity human
8
human brain
8

Similar Publications

Leishmania sp. can affect the cardiovascular system of dogs - A systematic review of over 80 years.

Vet Parasitol

January 2025

Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in NanoBiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.

Cardiovascular involvement in Leishmania sp. infections still requires further elucidation, with cutaneous and organic changes being more frequently observed. The aim of this study was to conduct a systematic review of cardiovascular involvement in dogs with canine visceral leishmaniasis, considering a publication span of over 80 years.

View Article and Find Full Text PDF

Unlabelled: The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear.

View Article and Find Full Text PDF

Transcranial magnetic stimulation combined with intracranial local field potential recordings in humans (TMS-iEEG) represents a new method for investigating electrophysiologic effects of TMS with spatiotemporal precision. We applied TMS-iEEG to the dorsolateral prefrontal cortex (dlPFC) in two subjects and demonstrate evoked activity in the subgenual anterior cingulate cortex (sgACC). This study provides direct electrophysiologic evidence that dlPFC TMS, as targeted for depression treatment, can modulate brain activity in the sgACC.

View Article and Find Full Text PDF

Objective: Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions.

View Article and Find Full Text PDF

The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets.

Int J Cardiol Cardiovasc Risk Prev

March 2025

Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.

Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!