Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury.

Phytomedicine

Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland. Electronic address:

Published: December 2021

Background: Recent advancements in understanding β-escin action provide basis for new therapeutic claims for the drug. β-escin-evoked attenuation of NF-κB-dependent signaling, increase in MMP-14 and decrease in COUP-TFII content and a rise in cholesterol biosynthesis could be beneficial in alleviating muscle-damaging processes.

Purpose: The aim of this study was to investigate the effect of β-escin on skeletal muscle regeneration.

Methods: Rat model of cardiotoxin-induced injury of fast-twich extensor digitorum longus (EDL) and slow-twich soleus (SOL) muscles and C2C12 myoblast cells were used in the study. We evaluated muscles obtained on day 3 and 14 post-injury by histological analyses of muscle fibers, connective tissue, and mononuclear infiltrate, by immunolocalization of macrophages and by qPCR to quantify the expression of muscle regeneration-related genes. Mechanism of drug action was investigated in vitro by assessing cell viability, NF-κB activation, MMP-2 and MMP-9 secretion, and ALDH activity.

Results: In rat model, β-escin rescues regenerating muscles from atrophy. The drug reduces inflammatory infiltration, increases the number of muscle fibers and decreases fibrosis. β-escin reduces macrophage infiltration into injured muscles and promotes their M2 polarization. It also alters transcription of muscle regeneration-related genes: Myf5, Myh2, Myh3, Myh8, Myod1, Pax3 and Pax7, and Pcna. In C2C12 myoblasts in vitro, β-escin inhibits TNF-α-induced activation of NF-κB, reduces secretion of MMP-9 and increases ALDH activity.

Conclusions: The data reveal beneficial role of β-escin in muscle regeneration, particularly in poorly regenerating slow-twitch muscles. The findings provide rationale for further studies on β-escin repositioning into conditions associated with muscle damage such as strenuous exercise, drug-induced myotoxicity or age-related disuse atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2021.153791DOI Listing

Publication Analysis

Top Keywords

rat model
12
muscle
9
β-escin
8
β-escin muscle
8
muscle regeneration
8
skeletal muscle
8
muscle fibers
8
muscle regeneration-related
8
regeneration-related genes
8
muscles
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!