New Schiff base ligand (DPMN) was synthesized from the condensation of 2-hydroxy-5-nitrobenzaldehyde and 2-amino-4,6-dimethoxypyrimidine which was confirmed by spectroscopic and analytical methods. Solid air stable copper nanoparticles (DPMN-CuNPs) were synthesized from its copper chloride salt and it is stabilized by the prepared Schiff base ligand by phase transfer assisted synthesis which is a modified Brust-Schiffrin technique. The formation of ligand stabilized copper nanoparticles was confirmed by UV-Visible and FT-IR spectroscopic techniques. The size, surface morphology and quality of DPMN-CuNPs were analyzed by SEM and TEM techniques. Antioxidant activities of DPMN and DPMN-CuNPs with DPPH, SOD, peroxide and nitrous oxide were analyzed by electronic absorption spectroscopy. DNA interaction between DPMN and DPMN-CuNPs with CT-DNA was carried out using electronic absorption, fluorescence, viscometric measurements and cyclic voltammetric techniques. Interaction between BSA and the synthesized compounds analyzed by electronic absorption spectroscopy, Antimicrobial studies confirmed that the synthesized DPMN-CuNPs possess significant biological activities than DPMN. Anticancer results suggest that prepared DPMN-CuNPs have significant anticancer activity against different cancer cell lines and least toxic effect against the normal (NHDF) cell line. Other than the positive response in biological evaluation, our DPMN-CuNPs possess good catalytic activity in methyl orange reduction, methylene blue degradation and nitro phenol reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120454 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Research Centre for Energy, Environment and Technology (CIEMAT), Avda. Complutense, 40, 28040, Madrid, Spain.
As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!