Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The balance of published data have largely focused on adaptations in muscle and fiber size after anterior cruciate ligament reconstruction (ACLR), failing to account for the dynamic changes in the behavior of the muscles' contractile elements that strongly contribute to force production. To better understand the sources of quadriceps dysfunction, the purpose of our research was to determine if alterations in fascicle behavior are present after ACLR. Unilateral ACLR individuals (9 m/9f; 21 ± 3 yrs; 1.74 ± 0.12 m;71.58 ± 13.31 kg; months from surgery:38 ± 36) and healthy controls (3 m/6f; 23 ± 2 yrs; 1.67 ± 0.10 m; 63.51 ± 10.11 kg) participated. In-vivo vastus lateralis fascicle behavior was recorded using ultrasonography during three maximal isokinetic knee extensions (60°·s). Fascicle length, angle, and shortening velocity were calculated and analyzed from rest to peak torque. Peak knee extension torque was averaged between isokinetic trials (Nm·kg). Group by limb interactions were assessed using separate two-way analyses of variance and were further evaluated by comparing 95% confidence intervals where appropriate. Significant interactions were present for fascicle angle at peak torque (P = 0.01), fascicle length excursion (P = 0.05), fascicle angle excursion (P < 0.01), fascicle shortening velocity (P = 0.05) and strength (P = 0.03). Upon post-hoc evaluation, the surgical limb displayed altered in-vivo fascicle behavior compared to all limbs (P < 0.05) and reduced strength compared to the contralateral and right control limbs (P < 0.05). No other significant interactions were present (P > 0.05). Our data show that those with a history of ACLR have fascicles that are slower, lengthen less and operate with lower angles relative to the axis of force production. Altered fascicle behavior after ACLR may be an important underlying factor to explaining the protracted quadriceps dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2021.110808 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!