A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insufficient sampling frequencies skew heart rate variability estimates: Implications for extracting heart rate metrics from neuroimaging and physiological data. | LitMetric

Insufficient sampling frequencies skew heart rate variability estimates: Implications for extracting heart rate metrics from neuroimaging and physiological data.

J Biomed Inform

Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Published: November 2021

Background: While cardiac pulsations are widely present within physiological and neuroimaging data, it is unknown the extent this information can provide valid and reliable heart rate and heart rate variability (HRV) estimates. The objective of this study was to demonstrate how a slight temporal shift due to an insufficient sampling frequency can impact the validity/accuracy of deriving cardiac metrics.

Methods: Twenty-two participants were instrumented with valid/reliable industry-standard or open-source electrocardiograms. Five-minute lead II recordings were collected at 1000 Hz in an upright orthostatic position. Following artifact removal, the 1000 Hz recording for each participant was downsampled to frequencies ranging 2-500 Hz. The validity of each participant's downsampled recording was compared against their 1000 Hz recording ("reference-standard") using Bland-Altman plots with 95 % limits of agreement (LOA), coefficient of variation (CoV), intraclass correlation coefficients, and adjusted r-squared values.

Results: Downsampled frequencies of ≥ 50 and ≥ 90 Hz produced highly robust measures with narrow log-transformed 95 % LOA (<±0.01) and low CoV values (≤3.5 %) for heart rate and HRV metrics, respectively. Below these thresholds, the log-transformed 95 % LOA became wider (LOA range: ±0.1-1.9) and more variable (CoV range: 1.5-111.6 %).

Conclusion: These results provide an important consideration for obtaining cardiac information from physiological data. Compared to the "reference-standard" ECG, a seemingly negligible temporal shift of the systolic contraction (R wave) greater than 11-milliseconds (90 Hz) away from its true value, lessened the validity of the HRV. Further research is warranted to determine the minimum sampling frequency required to obtain valid heart rate/HRV metrics from pulsatile waveforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2021.103934DOI Listing

Publication Analysis

Top Keywords

heart rate
16
insufficient sampling
8
rate variability
8
1000 hz recording
8
downsampled frequencies
8
sampling frequencies
4
frequencies skew
4
heart
4
skew heart
4
rate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!