Age-related changes in the TRB and IGH repertoires in healthy adult males and females.

Immunol Lett

State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Published: December 2021

A diverse immune repertoire is capable of recognizing the enormous universe of foreign antigens encountered over life. Aging has a profound impact on the immune repertoires. However, whether continuous age-related changes in the immune repertoires differ between sexes is unclear. In this study, the characteristics of immune repertoires stratified by sex during aging are deciphered by analyzing T-cell receptor β-chain (TRB) and immunoglobulin heavy chain (IGH) sequences in 361 healthy adults. A similar change was observed between males and females across their lifespan, whereas age-subgroup analysis revealed sex-specific signatures in TRB and IGH repertoires. In regard to TRB, in males, repertoire richness and evenness increases slightly before the age of 32 years and 45 years respectively, and decreases sharply thereafter. Intriguingly, in females, they decrease significantly until around the age 57 years old, and subsequently undergo a stable stage up to the age of 83 years. Although IGH repertoire evenness increases significantly with age in both sexes, richness decreases significantly with age in males but remains stable in females. Moreover, average length of IGH CDR3 increases with age. In conclusion, these findings provide fundamental insights into the mechanisms underlying sex differences in adaptive immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imlet.2021.10.002DOI Listing

Publication Analysis

Top Keywords

immune repertoires
12
increases age
12
age years
12
age-related changes
8
trb igh
8
igh repertoires
8
males females
8
evenness increases
8
age
6
igh
5

Similar Publications

Background: The complementarity-determining region (CDR) of antibodies represents the most diverse region both in terms of sequence and structural characteristics, playing the most critical role in antibody recognition and binding for immune responses. Over the past decades, several numbering schemes have been introduced to define CDRs based on sequence. However, the existence of diverse numbering schemes has led to potential confusion, and a comprehensive evaluation of these schemes is lacking.

View Article and Find Full Text PDF

Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.

View Article and Find Full Text PDF

Alternative splicing expands the antiviral IFITM repertoire in Chinese rufous horseshoe bats.

PLoS Pathog

December 2024

Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.

Species-specific interferon responses are shaped by the virus-host arms race. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication. These genes restrict virus entry and are key players in antiviral interferon responses.

View Article and Find Full Text PDF

Genomic analysis of isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates.

Front Microbiol

December 2024

Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.

Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in genomes deposited in public databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!