Depression is a prevalent, life-threatening, and highly recurrent psychiatric illness. Several studies have shown that depression is associated with endogenous metabolites and the gut microbiota. However, it is unclear whether metabolites in different gut tissues play a role in the pathogenesis of depression and whether the gut microbiota has an impact on depression. Here, we investigated the metabolic signatures in the jejunum, ileum, and colorectum using metabolomics and explored the influence of the gut microbiota on both the development of chronic variable stress (CVS)-induced depression rat model and variations in gut tissue metabolites using a gnotobiotic rat model. The results showed that CVS induced disturbances in gut metabolites (29 differential metabolites) and had different effects on the different segments. When CVS rats were treated with antibiotics, depression-like ethological disorders disappeared, and the decreased catecholamine levels almost normalized. The depression recovery was attributed to the influence of antibiotics on the gut microbiota, especially inhibiting Clostridiaceae (F1), Candidatus arthromitus (G2), Lactobacillus (G6), and elevating Pseudomonadaceae (F6). Moreover, 16 of 29 varied metabolites in CVS rats were reversed with antibiotic treatment. Among them, 12 increased metabolites were decreased, suggesting a trigger for depression. However, four decreased metabolites were increased, indicating a potential therapeutic effect on depression. Based on the Pearson's correlation analysis, hypoxanthine, 3-hydroxypristanic acid, threonic acid, and L-carnitine were strongly associated with F6, F1, G2, and G6, which are involved in the development and prevention of depression. These findings provide a possibility for further exploration of the pathogenesis and prevention of depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2021.10.016 | DOI Listing |
Semin Immunopathol
January 2025
Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood.
View Article and Find Full Text PDFGut
January 2025
Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
Background: Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals.
Objectives: This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota.
Gut
January 2025
Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.
Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.
Clin Microbiol Infect
January 2025
Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain. Electronic address:
Objectives: Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (R-CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success.
Methods: We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for R-CDI (January 2018 to December 2022).
J Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!