Brugia malayi asparaginyl-tRNA synthetase (BmAsnRS) has been identified as an immunodominant antigen and a physiocrine that mimics Interleukin-8 (IL-8) to induce chemotaxis and angiogenesis in endothelial cells. Computational analyses have shown that the N-terminal region of BmAsnRS has a novel fold, a lysine rich β-hairpin α-helix, (FLIRTKKDGKQIWE) which is similar to that present in IL-8 chemokine, CXCR1. This novel fold is involved in tRNA binding and is integral for the manifestation of the disease, lymphatic filariasis (LF). Drug discovery programmes carried out so far for LF have not been successful because of the target (BmAsnRS) resistance due to the disease-associated mutation. Mutations in AARS targets have been shown to correlate with several diseases. However, no disease-associated mutational studies have been carried out for LF. BmAsnRS has been an established target for LF. It was proposed, therefore, to study the effect of single point mutations in BmAsnRS so as to elucidate the molecular target. An understanding of the molecular consequences of mutations will provide insight into how resistance develops in addition to the identification of the likely resistance-conferring mutations. Three mutants were, therefore, generated by site-directed mutagenesis using CUPSAT server and their angiogenic properties evaluated. Cytometric analysis of the mutants on endothelial cell cycle was also carried out. CUPSAT prediction of protein stability upon point mutations reveal that two mutants generated are likely resistance-conferring mutations. All the three mutants show significant reduction in their angiogenic properties and reduction in the DNA content in the cells of S and G2/M phases thus showing altered function of the gene encoding the drug target. The resistance- conferring mutants, however, show angiogenic properties nearer to the wild type protein, BmAsnRS. Future work on designing newer drugs may take into consideration these drug resistance-conferring mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molbiopara.2021.111426 | DOI Listing |
Pharmaceutics
December 2024
Division of Pulmonology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
Lung cancer remains a major global health problem because of its high cancer-related mortality rate despite advances in therapeutic approaches. Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, is more amenable to surgical intervention in its early stages. However, the prognosis for advanced NSCLC remains poor, owing to limited treatment options.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt.
Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China.
Angiogenic T cells (Tang) are crucial in promoting angiogenesis, with the loss of CD28 serving as a marker for highly differentiated and senescent T cells. This study aims to investigate the characteristics and potential roles of CD8CD28 Tang in patients with ANCA-associated vasculitis (AAV). A cohort of AAV patients and matched healthy controls (HCs) were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!