Gut dysbiosis is an important modifier of pathologies including cardiovascular disease but our understanding of the role of individual microbes is limited. Here, we have used transplantation of mouse microbiota into microbiota-deficient zebrafish larvae to study the interaction between members of a mammalian high fat diet-associated gut microbiota with a lipid rich diet challenge in a tractable model species. We find zebrafish larvae are more susceptible to hyperlipidaemia when exposed to the mouse high fat-diet-associated microbiota and that this effect can be driven by two individual bacterial species fractionated from the mouse high fat-diet-associated microbiota. We find Stenotrophomonas maltophilia increases the hyperlipidaemic potential of chicken egg yolk to zebrafish larvae independent of direct interaction between S. maltophilia and the zebrafish host. Colonization by live, or exposure to heat-killed, Enterococcus faecalis accelerates hyperlipidaemia via host MyD88 signaling. The hyperlipidaemic effect is replicated by exposure to the Gram-positive toll-like receptor agonists peptidoglycan and lipoteichoic acid in a MyD88-dependent manner. In this work, we demonstrate the applicability of zebrafish as a tractable host for the identification of gut microbes that can induce conditional host phenotypes via microbiota transplantation and subsequent challenge with a high fat diet.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.1796DOI Listing

Publication Analysis

Top Keywords

zebrafish larvae
16
high fat
12
mouse microbiota
8
mouse high
8
high fat-diet-associated
8
fat-diet-associated microbiota
8
microbiota
6
zebrafish
6
transplantation high
4
fat fed
4

Similar Publications

Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.

View Article and Find Full Text PDF

Live Visualization of Calcified Bones in Zebrafish and Medaka Larvae and Juveniles Using Calcein and Alizarin Red S.

Bio Protoc

December 2024

Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.

Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.

View Article and Find Full Text PDF

Neurotoxic effects of citronellol induced by the conversion of kynurenine to 3-hydroxykynurenine.

J Hazard Mater

December 2024

Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea. Electronic address:

Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!