The National Academies of Sciences and Medicine 2020 consensus statement advocates the reinstatement of research in preconception heritable human genome editing (HHGE), despite the ethical concerns that have been voiced about interventions in the germline, and outlines criteria for its eventual clinical application to address monogenic disorders. However, the statement does not give adequate consideration to alternative technologies. Importantly, it omits comparison to fetal gene therapy (FGT), which involves gene modification applied prenatally to the developing fetus and which is better researched and less ethically contentious. While both technologies are applicable to the same monogenic diseases causing significant prenatal or early childhood morbidity, the benefits and risks of HHGE are distinct from FGT though there are important overlaps. FGT has the current advantage of a wealth of robust preclinical data, while HHGE is nascent technology and its feasibility for specific diseases still requires scientific proof. The ethical concerns surrounding each are unique and deserving of further discussion, as there are compelling arguments supporting research and eventual clinical translation of both technologies. In this Opinion, we consider HHGE and FGT through technical and ethical lenses, applying common ethical principles to provide a sense of their feasibility and acceptability. Currently, FGT is in a more advanced position for clinical translation and may be less ethically contentious than HHGE, so it deserves to be considered as an alternative therapy in further discussions on HHGE implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/deab222DOI Listing

Publication Analysis

Top Keywords

gene modification
8
ethical concerns
8
eventual clinical
8
ethically contentious
8
clinical translation
8
hhge
6
ethical
5
fgt
5
ethical considerations
4
considerations preconception
4

Similar Publications

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Introduction: Gene editing therapies offer the possibility of substantial improvement in treatment and quality of life for people with haemophilia (PWH) in a landscape of dynamic therapeutic advancement. Developing a common and understandable language to discuss gene editing will be essential to ensure these treatments can be deployed in a safe and effective manner with fully informed and shared decision-making between healthcare professionals (HCPs) and PWH. A lexicon explaining and clarifying key concepts is one potential tool to address these aims.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Hepatitis B virus (HBV) is the main pathogen for HCC development. HBV covalently closed circular DNA (cccDNA) forms extra-host chromatin-like minichromosomes in the nucleus of hepatocytes with host histones, non-histones, HBV X protein (HBx) and HBV core protein (HBc).

View Article and Find Full Text PDF

Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer.

J Cell Mol Med

January 2025

Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.

Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!