A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pain assessment in horses using automatic facial expression recognition through deep learning-based modeling. | LitMetric

The aim of this study was to develop and evaluate a machine vision algorithm to assess the pain level in horses, using an automatic computational classifier based on the Horse Grimace Scale (HGS) and trained by machine learning method. The use of the Horse Grimace Scale is dependent on a human observer, who most of the time does not have availability to evaluate the animal for long periods and must also be well trained in order to apply the evaluation system correctly. In addition, even with adequate training, the presence of an unknown person near an animal in pain can result in behavioral changes, making the evaluation more complex. As a possible solution, the automatic video-imaging system will be able to monitor pain responses in horses more accurately and in real-time, and thus allow an earlier diagnosis and more efficient treatment for the affected animals. This study is based on assessment of facial expressions of 7 horses that underwent castration, collected through a video system positioned on the top of the feeder station, capturing images at 4 distinct timepoints daily for two days before and four days after surgical castration. A labeling process was applied to build a pain facial image database and machine learning methods were used to train the computational pain classifier. The machine vision algorithm was developed through the training of a Convolutional Neural Network (CNN) that resulted in an overall accuracy of 75.8% while classifying pain on three levels: not present, moderately present, and obviously present. While classifying between two categories (pain not present and pain present) the overall accuracy reached 88.3%. Although there are some improvements to be made in order to use the system in a daily routine, the model appears promising and capable of measuring pain on images of horses automatically through facial expressions, collected from video images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525760PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258672PLOS

Publication Analysis

Top Keywords

pain
10
horses automatic
8
machine vision
8
vision algorithm
8
horse grimace
8
grimace scale
8
machine learning
8
facial expressions
8
collected video
8
horses
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!