There is a need for developing a simple and easy-to-maintain disinfection technique for sewage treatment for use in developing countries and disaster-affected areas. We propose a novel disinfection technology that inactivates bacteria in wastewater via sunlight irradiation under high salt concentration by mixing with seawater. The disinfection efficiency of the proposed method was quantitatively evaluated and examined using fecal indicator bacteria. When the salinity in wastewater was adjusted to 30 practical salinity units by mixing with seawater, the constant of inactivation irradiation energy K (m/MJ) was 1.6-2.2-fold greater than that without seawater for total coliforms and Escherichia coli. By contrast, although enterococci were inactivated by sunlight irradiation, an increase in salinity did not enhance disinfection. On setting the irradiation energy of sunlight to 5.5 MJ/m, >99% of the fecal indicator bacteria were inactivated. Finally, we examined the relationship between the attenuation of irradiance and water depth and accordingly proposed a design of a treatment system wherein wastewater and seawater were adequately mixed and passed via a disinfection tank under the natural flow with sunlight irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wh.2021.153 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!