Due to the sparsity of available features in web-scale predictive analytics, combinatorial features become a crucial means for deriving accurate predictions. As a well-established approach, a factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering. With the prominent development of deep neural networks (DNNs), there is a recent and ongoing trend of enhancing the expressiveness of FM-based models with DNNs. However, though better results are obtained with DNN-based FM variants, such performance gain is paid off by an enormous amount (usually millions) of excessive model parameters on top of the plain FM. Consequently, the heavy parameterization impedes the real-life practicality of those deep models, especially efficient deployment on resource-constrained Internet of Things (IoT) and edge devices. In this article, we move beyond the traditional real space where most deep FM-based models are defined and seek solutions from quaternion representations within the hypercomplex space. Specifically, we propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM), which are two novel lightweight and memory-efficient quaternion-valued models for sparse predictive analytics. By introducing a brand new take on FM-based models with the notion of quaternion algebra, our models not only enable expressive inter-component feature interactions but also significantly reduce the parameter size due to lower degrees of freedom in the hypercomplex Hamilton product compared with real-valued matrix multiplication. Extensive experimental results on three large-scale datasets demonstrate that QFM achieves 4.36% performance improvement over the plain FM without introducing any extra parameters, while QNFM outperforms all baselines with up to two magnitudes' parameter size reduction in comparison to state-of-the-art peer methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3118706 | DOI Listing |
Biomedicines
January 2025
Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea.
Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA-disease associations using biological experiments is inefficient in terms of cost and time.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, 0130 Oslo, Norway.
: Metabolomics measurements are noisy, often characterized by a small sample size and missing entries. While data-driven methods have shown promise in terms of analyzing metabolomics data, e.g.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.
Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.
Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.
Front Immunol
January 2025
Department of Radiation Oncology, Lianyungang Second People's Hospital (Lianyungang Tumur Hospital), Lianyungang, China.
Background: Hepatocellular carcinoma (LIHC) poses a significant health challenge worldwide, primarily due to late-stage diagnosis and the limited effectiveness of current therapies. Cancer stem cells are known to play a role in tumor development, metastasis, and resistance to treatment. A thorough understanding of genes associated with stem cells is crucial for improving the diagnostic precision of LIHC and for the advancement of effective immunotherapy approaches.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!