Implant-associated bacterial infections significantly impair the integration between titanium and soft tissues. Traditional antibacterial modifications of titanium implants are able to eliminate bacteria, but the resulting pro-inflammatory reactions are usually ignored, which still poses potential risks to human bodies. Here, a dual drug-loading system on titanium has been developed via the adhesion of a catechol motif-modified methacrylated gelatin hydrogel onto TiO nanotubes. Then synthesized CaO nanoparticles (NPs) are embedded into the hydrogel, and interleukin-4 (IL-4) is loaded into the nanotubes to achieve both antibacterial and anti-inflammatory properties. The dual drug-loading system can eliminate Staphylococcus aureus (S. aureus) rapidly, attributed to the H O release from CaO NPs. The potential cytotoxicity of CaO NPs is also remarkably reduced after being embedded into the hydrogel. More importantly, with the gradual release of IL-4, the dual drug-loading system is capable of modulating pro-inflammatory reactions by inducing M2 phenotype polarization of macrophages. In a subcutaneous infection model, the S. aureus contamination is effectively resolved after 2 days, and the resulting pro-inflammatory reactions are also inhibited after 7 days. Finally, the damaged tissue is significantly recovered. Taken together, the dual drug-loading system exhibits great therapeutic potential in effectively killing pathogens and inhibiting the resulting pro-inflammatory reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202102907DOI Listing

Publication Analysis

Top Keywords

pro-inflammatory reactions
16
dual drug-loading
16
drug-loading system
16
tio nanotubes
8
embedded hydrogel
8
cao nps
8
calcium peroxide
4
peroxide nanoparticles-embedded
4
nanoparticles-embedded coatings
4
coatings anti-inflammatory
4

Similar Publications

Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis.

View Article and Find Full Text PDF

Examination of the potential clinical application of 5DEX-0509R, the tumor macrophage-targeting nanomedicine.

Cytokine

December 2024

Cancer Research Unit, Sumitomo Pharma Co Ltd, Osaka, Japan. Electronic address:

Toll-like receptors (TLRs) are crucial for the detection of infections and activation of downstream signaling pathways that lead to the production of pro-inflammatory cytokines and interferons. Because of their strong immunostimulatory activity, TLRs are thought to be a "double-edged sword" for systemic treatment, even in the cancer field. To solve this, we have developed dextran-based TAM targeting activator conjugate (D-TAC) technology which successfully uses tumor-associated macrophages (TAMs) to deliver the TLR7 agonist DSP-0509.

View Article and Find Full Text PDF

Elevated inflammatory reactions are a significant component in cerebral ischemia-reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen-glucose deprivation/reoxygenation (OGDR) condition.

View Article and Find Full Text PDF

Background: Interleukin-18 (IL-18) is recognized for its pro-inflammatory properties and plays a central role in the progression of rheumatoid arthritis (RA). The specific single-nucleotide polymorphisms (SNPs), rs1946518 (-607C>A) and rs187238 (-137G), that are found in the IL-18 promoter region can potentially impact the expression of the IL-18 gene. This study aimed to investigate the correlation between these two polymorphisms and RA in the Iranian population.

View Article and Find Full Text PDF

Exposure to MC-LR activates the RAF/ERK signaling pathway, leading to renal inflammation and tissue damage in mice.

J Toxicol Environ Health A

December 2024

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.

Exposure to microcysatin-LR (MC-LR) is known to result in kidney damage, however the underlying mechanisms involved in MC-LR-initiated renal injury are not known. Thus, the aim of this study was to examine the effects of exposure to MC-LR on human embryo kidney (HEK 293) cell and male C57BL/6 . In the study, HEK 293 cells were incubated with MC-LR (20 µM) for 24 hr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!