This work explored the mechanism of augmented stress-induced vascular reactivity of senescent murine femoral arteries (FAs). Mechanical and pharmacological reactivity of young (12-25 weeks, y-FA) and senescent (>104 weeks, s-FAs) femoral arteries was measured by wire myography. Expression and protein phosphorylation of selected regulatory proteins were studied by western blotting. Expression ratio of the Exon24 in/out splice isoforms of the regulatory subunit of myosin phosphatase, MYPT1 (MYPT1-Exon24 in/out), was determined by polymerase chain reaction (PCR). While the resting length-tension relationship showed no alteration, the stretch-induced-tone increased to 8.3 ± 0.9 mN in s-FA versus only 4.6 ± 0.3 mN in y-FAs. Under basal conditions, phosphorylation of the regulatory light chain of myosin at S19 was 19.2 ± 5.8% in y-FA versus 49.2 ± 12.6% in s-FA. Inhibition of endogenous NO release raised tone additionally to 10.4 ± 1.2 mN in s-FA, whereas this treatment had a negligible effect in y-FAs (4.8 ± 0.3 mN). In s-FAs, reactivity to NO donor was augmented (pD = -4.5 ± 0.3 in y-FA vs. -5.2 ± 0.1 in senescent). Accordingly, in s-FAs, MYPT1-Exon24-out-mRNA, which is responsible for expression of the more sensitive to protein-kinase G, leucine-zipper-positive MYPT1 isoform, was increased. The present work provides evidence that senescent murine s-FA undergoes vascular remodelling associated with increases in stretch-activated contractility and sensitivity to NO/cGMP/PKG system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bcpt.13675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!