Background: The process of liver organogenesis has served as a paradigm for organ formation. However, there remains a lack of understanding regarding early mouse and human liver bud morphogenesis and early liver volumetric growth. Elucidating dynamic changes in liver volumes is critical for understanding organ development, implementing toxicological studies, and for modeling hPSC-derived liver organoid growth. New visualization, analysis, and experimental techniques are desperately needed.
Results: Here, we combine observational data with digital resources, new 3D imaging approaches, retrospective analysis of liver volume data, mathematical modeling, and experiments with hPSC-derived liver organoids. Mouse and human liver organogenesis, characterized by exponential growth, demonstrate distinct spatial features and growth curves over time, which we mathematically modeled using Gompertz models. Visualization of liver-epithelial and septum transversum mesenchyme (STM) interactions suggests extended interactions, which together with new spatial features may be responsible for extensive exponential growth. These STM interactions are modeled with a novel in vitro human pluripotent stem cell (hPSC)-derived hepatic organoid system that exhibits cell migration.
Conclusions: Our methods enhance our understanding of liver organogenesis, with new 3D visualization, analysis, mathematical modeling, and in vitro models with hPSCs. Our approach highlights mouse and human differences and provides potential hypothesis for further investigation in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!