Background: Assessing an optimal reference gene as an internal control for target gene normalization is important during quantitative real time polymerase chain reaction (RT-qPCR) of three dimensional (3D) cell culture. Especially, gene profiling of cancer cells under a complex 3D microenvironment in a polymer scaffold provides a deeper understanding of tumor functioning in vivo.
Methods And Results: Expression of six housekeeping genes (HKG's): Glyceraldehyde-3-phosphodehydrogenase (GAPDH), β-actin (ACTB), beta-2-microglobulin (B2M), 18S ribosomal RNA (18S rRNA), peptidyl-propyl-isomerase A (PPIA), and ribosomal protein L13 (RPL-13) during two dimensional (2D) culture, and alginate-carboxymethylcellulose scaffold based 3D culture conditioned up to 21 days was analysed for hepatocellular carcinoma (Huh-7) cells. The gene expression studies were performed by determining primer efficiency, melting curve and threshold cycle analysis. Further, RT-qPCR data was validated statistically using geNorm and NormFinder softwares. The study indicated RPL-13, 18S rRNA and B2M to be stable among selected referral HKG candidates.
Conclusion: An exploration of a reliable HKG is necessary for normalization of gene expression in RT-qPCR during varying cell culture conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06830-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!