Background: Access to neurological care for Parkinson disease (PD) is a rare privilege for millions of people worldwide, especially in resource-limited countries. In 2013, there were just 1200 neurologists in India for a population of 1.3 billion people; in Africa, the average population per neurologist exceeds 3.3 million people. In contrast, 60,000 people receive a diagnosis of PD every year in the United States alone, and similar patterns of rising PD cases-fueled mostly by environmental pollution and an aging population-can be seen worldwide. The current projection of more than 12 million patients with PD worldwide by 2040 is only part of the picture given that more than 20% of patients with PD remain undiagnosed. Timely diagnosis and frequent assessment are key to ensure timely and appropriate medical intervention, thus improving the quality of life of patients with PD.
Objective: In this paper, we propose a web-based framework that can help anyone anywhere around the world record a short speech task and analyze the recorded data to screen for PD.
Methods: We collected data from 726 unique participants (PD: 262/726, 36.1% were women; non-PD: 464/726, 63.9% were women; average age 61 years) from all over the United States and beyond. A small portion of the data (approximately 54/726, 7.4%) was collected in a laboratory setting to compare the performance of the models trained with noisy home environment data against high-quality laboratory-environment data. The participants were instructed to utter a popular pangram containing all the letters in the English alphabet, "the quick brown fox jumps over the lazy dog." We extracted both standard acoustic features (mel-frequency cepstral coefficients and jitter and shimmer variants) and deep learning-based embedding features from the speech data. Using these features, we trained several machine learning algorithms. We also applied model interpretation techniques such as Shapley additive explanations to ascertain the importance of each feature in determining the model's output.
Results: We achieved an area under the curve of 0.753 for determining the presence of self-reported PD by modeling the standard acoustic features through the XGBoost-a gradient-boosted decision tree model. Further analysis revealed that the widely used mel-frequency cepstral coefficient features and a subset of previously validated dysphonia features designed for detecting PD from a verbal phonation task (pronouncing "ahh") influence the model's decision the most.
Conclusions: Our model performed equally well on data collected in a controlled laboratory environment and in the wild across different gender and age groups. Using this tool, we can collect data from almost anyone anywhere with an audio-enabled device and help the participants screen for PD remotely, contributing to equity and access in neurological care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564663 | PMC |
http://dx.doi.org/10.2196/26305 | DOI Listing |
Adv Healthc Mater
January 2025
INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.
Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL).
View Article and Find Full Text PDFSci Rep
January 2025
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.
View Article and Find Full Text PDFClin Rehabil
January 2025
School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
Objective: To map evidence on the characteristics, effectiveness, and potential mechanisms of motor imagery interventions targeting cognitive function and depression in adults with neurological disorders and/or mobility impairments.
Data Sources: Six English databases (The Cochrane Library, PubMed, Embase, Scopus, Web of Sciences, and PsycINFO), two Chinese databases (CNKI and WanFang), and a gray literature database were searched from inception to December 2024.
Review Methods: This scoping review followed the Joanna Briggs Institute Scoping Review methodology.
Brain Res Bull
January 2025
Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!