Although protein therapeutics is of significance in therapeutic intervention of cancers, controlled delivery of therapeutic proteins still faces substantial challenges including susceptibility to degradation and denaturation and poor membrane permeability. Herein, we report a sialic acid (SA)-imprinted biodegradable silica nanoparticles (BS-NPs)-based protein delivery strategy for targeted cancer therapy. Cytotoxic ribonuclease A (RNase A) was effectively caged in the matrix of disulfide-hybridized silica NPs (encapsulation efficiency of ∼64%), which were further functionalized with cancer targeting capability via surface imprinting with SA as imprinting template. Such nanovectors could not only maintain high stability in physiological conditions but also permit redox-triggered biodegradation for both concomitant release of the loaded therapeutic cargo and clearance. experiments confirmed that the SA-imprinted RNase A@BS-NPs could selectively target SA-overexpressed tumor cells, promote cells uptake, and subsequently be cleaved by intracellular glutathione (GSH), resulting in rapid release kinetics and enhanced cell cytotoxicity. experiments further confirmed that the SA-imprinted RNase A@BS-NPs had specific tumor-targeting ability and high therapeutic efficacy of RNase A in xenograft tumor model. Due to the specific targeting and traceless GSH-stimulated intracellular protein release, the SA-imprinted BS-NPs provided a promising platform for the delivery of biomacromolecules in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c07166 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.
View Article and Find Full Text PDFMol Cancer
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen 208, Porto, 4200‑135, Portugal.
Rectal cancer accounts for over 35% of the worldwide colorectal cancer burden representing a distinctive subset of cancers from those arising in the colon. Colorectal cancers exhibit a continuum of traits that differ with their location in the large intestine. Due to anatomical and molecular differences, rectal cancer is treated differently from colon cancer, with neoadjuvant chemoradiotherapy playing a pivotal role in the control of the locally advanced disease.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Health Education, Nanjing Municipal Center for Disease Control and Prevention, No.3, Zizhulin Road, Nanjing, Jiangsu Province, 210003, China.
Background: PARP inhibitors (PARPis) have shown promising effectiveness for ovarian cancer. This network meta-analysis (PROSPERO registration number CRD42024503390) comprehensively evaluated the effectiveness and safety of PARPis in platinum-sensitive recurrent ovarian cancer (PSROC).
Methods: Articles published before January 6, 2024 were obtained from electronic databases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!