Cocoa is a highly consumed food with beneficial effects on human health. Cocoa roasting has an important influence on its sensory and nutritional characteristics; therefore, roasting could also play a role in cocoa bioactivity. Thus, the aim of this paper is to unravel the effect of cocoa roasting conditions on its antioxidant capacity and modifications of gut microbiota after digestion-fermentation. HMF and furfural, chemical markers of non-enzymatic browning, were analyzed in unroasted and roasted cocoa powder at different temperatures, as well as different chocolates. The antioxidant capacity decreased with roasting, most probably due to the loss of phenolic compounds during heating. In the case of the evaluated chocolates, the antioxidant capacity was 2-3 times higher in the fermented fraction. On the other hand, HMF and furfural content increased during roasting due to increasing temperatures. Moreover, unroasted and roasted cocoa powder have different effects on gut microbial communities. Roasted cocoa favored butyrate production, whereas unroasted cocoa favored acetate and propionate production in a significant manner. In addition, unroasted and roasted cocoa produced significantly different gut microbial communities in terms of composition. Although many bacteria were affected, and were some of the most discriminant ones; whereas the former is a propionate producer, the latter is a butyrate producer that has also been linked to positive effects on the inflammatory health of the gut and the immune system. Therefore, unroasted and roasted cocoa (regardless of the roasting temperature) promote different bacteria and a different SCFA production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1fo01155c | DOI Listing |
Foods
December 2024
Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
The study investigated the effects of storage temperature, type of coffee, and brewing method on coffee's volatile compound profile and sensory quality. Three types of coffee were included in the study: Arabica, Robusta, and their 80/20 blend. Samples were stored at 5 °C and 20 °C for one month, after which the changes in the composition of volatile compounds were analysed and the sensory quality of espresso and cold brew coffee was assessed.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.
Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.
View Article and Find Full Text PDFFood Chem
December 2024
School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia. Electronic address:
Foods
December 2024
Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.
Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes.
View Article and Find Full Text PDFFoods
November 2024
Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy.
The increase in food production is accompanied by an increase in waste, particularly agricultural by-products from cultivation and processing. These residues are referred to as agricultural by-products. To address this issue, biotechnological processes can be used to create new applications for these by-products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!