Objectives: To evaluate the ability of photocurable gelatin to prevent stricture recurrence after urethral dilation in a rabbit urethral stricture model.
Methods: We created urethral strictures in the bulbar urethras of 10 male Japanese white rabbits using electrocoagulation. After 1 month, the rabbits were randomly divided into Group A (n = 5; urethral stricture dilation and the local application of photocurable gelatin using a ruthenium photoinitiator and irradiation with a light-emitting diode light [λ = 455 nm, 50 mW/cm ] for 1 min) and Group B (n = 5; dilation only). Urethral stricture status was evaluated 1-2 months later by retrograde urethrography and urethroscopy. The lumen ratio (urethral width at the stricture site to the normal urethral width on retrograde urethrography) was calculated. Urethral patency was considered to be improved when the urethral lumen could accommodate a 10-Fr urethroscope without resistance. Urethral specimens were harvested for histopathological examination.
Results: The mean lumen ratio did not differ significantly between Groups A and B before dilation (25.8% vs 23.4%; P = 0.40), but differed significantly after dilation (65.5% vs 27.3%, respectively; P = 0.03). Urethral patency improved in all rabbits in Group A (100%) versus one rabbit in Group B (20%; P = 0.02). The mean circumference of the regenerated urethral epithelium at the stricture site was larger in Group A than in Group B (14 mm vs 6.6 mm; P = 0.06).
Conclusions: Photocurable gelatin can reduce urethral stricture recurrence after dilation in a rabbit model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/iju.14730 | DOI Listing |
Biotechnol Bioeng
December 2024
Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China.
Vascularization is a key issue facing the construction of functional three-dimensional (3D) tissues, which is critical for the long-term survival and stability of tissue construct transplantation. In this study, a photocurable hydrogel material carboxymethyl chitosan (CHIMA) was successfully prepared and integrated with methacryloyl gelatin (GelMA) to construct the bioink GelMA/CHIMA, which was subsequently used 3D printing technology to prepared a bioactive scaffold with angiogenesis-inducing functionality. The results showed that the cross-linked GelMA/CHIMA bioink had a porous structure that supported cell growth and metabolism.
View Article and Find Full Text PDFCarbohydr Polym
February 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China. Electronic address:
Severe skin damage resulting from acute trauma is often accompanied by uncontrolled bleeding, microbial infections, and delayed wound healing. Herein, multifunctional sprayable hydrogels (CT-CS-ZIF@CIP Gel) were developed for wound management by incorporating antibacterial nanoplatforms (CT-CS-ZIF@CIP) into photocurable gels consisting of chitosan methacrylate and gallic acid grafted gelatin. The nanoplatform was initially constructed by sequentially loading CuSe (CS) and ciprofloxacin-decorated zeolitic imidazolate framework-8 (ZIF@CIP) onto Cu-doped Ti MOF (CT), in which CS served as a photothermal agent, ZIF enabled pH-responsive release of CIP, and CT acted as carriers for CS and ZIF@CIP.
View Article and Find Full Text PDFBiofabrication
November 2024
Medical Engineering, Southeast University, Nanjing, Nanjing, 210096, CHINA.
Three-dimensional (3D) organotypic skin in vitro has attracted increasing attention for drug development, cosmetics evaluation, and even clinical applications. However, the severe contraction of these models restricts their application, especially in the analyses based on barrier functions such as percutaneous penetration. For the full-thickness skin equivalents, the mechanical properties of the dermis scaffold plays an important role in the contraction resistance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy.
Adv Healthc Mater
December 2024
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P., 208016, India.
Critical-size bone trauma injuries present a significant clinical challenge because of the limited availability of autografts. In this study, a photocurable composite comprising of polycaprolactone, polypropylene fumarate, and nano-hydroxyapatite (nHAP) (P─P─H) is printed, which shows good osteoconduction in a rat model. A cryogel composed of gelatin-nHAP (GH) is developed to incorporate osteogenic components, specifically bone morphogenetic protein-2 (BMP-2) and zoledronic acid (ZA), termed as GH+B+Z, which is investigated for osteoinductive property in a rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!