A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance. | LitMetric

Traditional gas exchange measurements are cumbersome, which makes it difficult to capture variation in biochemical parameters, namely the maximum rate of carboxylation measured at a reference temperature (V ) and the maximum electron transport at a reference temperature (J ), in response to growth temperature over time from days to weeks. Hyperspectral reflectance provides reliable measures of V and J ; however, the capability of this method to capture biochemical acclimations of the two parameters to high growth temperature over time has not been demonstrated. In this study, V and J were measured over multiple growth stages during two growing seasons for field-grown soybeans using both gas exchange techniques and leaf spectral reflectance under ambient and four elevated canopy temperature treatments (ambient+1.5, +3, +4.5, and +6°C). Spectral vegetation indices and machine learning methods were used to build predictive models for V and J , based on the leaf reflectance. Results showed that these models yielded an R of 0.57-0.65 and 0.48-0.58 for V and J , respectively. Hyperspectral reflectance captured biochemical acclimation of leaf photosynthesis to high temperature in the field, improving spatial and temporal resolution in the ability to assess the impact of future warming on crop productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14204DOI Listing

Publication Analysis

Top Keywords

hyperspectral reflectance
12
biochemical acclimation
8
acclimation leaf
8
leaf photosynthesis
8
gas exchange
8
reference temperature
8
growth temperature
8
temperature time
8
temperature
6
reflectance
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!