Purpose: Measurement of the viscosity of concentrated protein solutions is vital for the manufacture and delivery of protein therapeutics. Conventional methods for viscosity measurements require large solution volumes, creating a severe limitation during the early stage of protein development. The goal of this work is to develop a robust technique that requires minimal sample.

Methods: In this work, a droplet-based microfluidic device is developed to quantify the viscosity of protein solutions while concentrating in micrometer-scale droplets. The technique requires only microliters of sample. The corresponding viscosity is characterized by multiple particle tracking microrheology (MPT).

Results: We show that the viscosities quantified in the microfluidic device are consistent with macroscopic results measured by a conventional rheometer for poly(ethylene) glycol (PEG) solutions. The technique was further applied to quantify viscosities of well-studied lysozyme and bovine serum albumin (BSA) solutions. Comparison to both macroscopic measurements and models (Krieger-Dougherty model) demonstrate the validity of the approach.

Conclusion: The droplet-based microfluidic device provides accurate quantitative values of viscosity over a range of concentrations for protein solutions with small sample volumes (~ μL) and high compositional resolution. This device will be extended to study the effect of different excipients and other additives on the viscosity of protein solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-021-03106-9DOI Listing

Publication Analysis

Top Keywords

protein solutions
20
droplet-based microfluidic
12
microfluidic device
12
quantify viscosity
8
technique requires
8
viscosity protein
8
viscosity
7
protein
7
solutions
7
microfluidic tool
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!