This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-021-03687-9 | DOI Listing |
Electrophoresis
November 2024
School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico.
Anal Chem
October 2024
Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States.
Cell viability studies are essential in numerous applications, including drug development, clinical analysis, bioanalytical assessments, food safety, and environmental monitoring. Microfluidic electrokinetic (EK) devices have been proven to be effective platforms to discriminate microorganisms by their viability status. Two decades ago, live and dead (.
View Article and Find Full Text PDFElife
August 2024
School of Molecular Sciences, Arizona State University, Tempe, United States.
Organelle heterogeneity and inter-organelle contacts within a single cell contribute to the limited sensitivity of current organelle separation techniques, thus hindering organelle subpopulation characterization. Here, we use direct current insulator-based dielectrophoresis (DC-iDEP) as an unbiased separation method and demonstrate its capability by identifying distinct distribution patterns of insulin vesicles from INS-1E insulinoma cells. A multiple voltage DC-iDEP strategy with increased range and sensitivity has been applied, and a differentiation factor (ratio of electrokinetic to dielectrophoretic mobility) has been used to characterize features of insulin vesicle distribution patterns.
View Article and Find Full Text PDFAnalyst
July 2024
School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
Insulator-based electrokinetically driven microfluidic devices stimulated with direct current (DC) voltages are an attractive solution for particle separation, concentration, or isolation. However, to design successful particle manipulation protocols, it is mandatory to know the mobilities of electroosmosis, and linear and nonlinear electrophoresis of the microchannel/liquid/particle system. Several techniques exist to characterize the mobilities of electroosmosis and linear electrophoresis.
View Article and Find Full Text PDFBiosensors (Basel)
May 2024
Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!