After more than a year with COVID-19, it becomes increasingly clear that certain variants of concern have the potential to be game changers, determining the future of our aviation. These variants pose significant health threats and possibly undermine ongoing vaccination efforts. Recent research showed that flight bans on the initial SARS-CoV-2 outbreak in January 2020 were implemented too late and therefore, turned out to be largely ineffective, enabling a swift turn into a fully-blown pandemic. In this study, we investigate the following question: How effective were existing flight bans against the newly emerged variants of concern? In other words: Do airlines and countries happen to repeat the same mistake again? We analyze the spread of the three most prevalent variants of concern right now: B.1.1.7 (known as the UK variant), B.1.351 (known as the South African variant), and P.1 (known as the Brazilian variant). We find that many countries, again, implemented flights bans once the mutated virus had enough time to be imported via air transportation. To support our empirical analysis further, we designed and implemented a compartmental network spreading model on top of worldwide flight data for the years 2020 and 2021. We observe that the model predictions are rather accurate and confirm our findings. Overall, we hope that our study encourages air transportation stakeholders and policy makers to avoid repeating earlier mistakes in the future, with the ultimate goal to overcome COVID-19 entirely.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514882 | PMC |
http://dx.doi.org/10.1016/j.tra.2021.08.007 | DOI Listing |
PeerJ
January 2025
Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Background: The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that may influence expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19.
View Article and Find Full Text PDFEvol Appl
January 2025
Save Our Seas Foundation Shark Research Center, Halmos College of Arts & Sciences Nova Southeastern University Dania Florida USA.
Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.
View Article and Find Full Text PDFFront Transplant
January 2025
Section of Transplant Surgery, Washington University School of Medicine, St. Louis, MO, United States.
Background: COVID-19 disease burden has been mitigated by vaccination; however, concerns persist regarding weakened immune responses in liver transplant (LT) recipients. This study investigates COVID-19 outcomes in LT recipients based on vaccination status.
Methods: This single-center retrospective study identified LT recipients with PCR-confirmed COVID-19 infection from 03/01/2020 to 07/31/2023.
Immunohorizons
January 2025
Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada.
The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.
Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!