The multifunctional roles of metabolic enzymes allow for the integration of multiple signals to precisely transduce external stimuli into cell fate decisions. Elevation of 3-phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme for de novo serine biosynthesis, is broadly associated with human cancer development; although how PHGDH activity is regulated and its implication in tumorigenesis remains unclear. Here we show that glucose restriction induces the phosphorylation of PHGDH by p38 at Ser371, which promotes the translocation of PHGDH from the cytosol into the nucleus. Concurrently, AMPK phosphorylates PHGDH-Ser55, selectively increasing PHGDH oxidation of malate into oxaloacetate, thus generating NADH. In the nucleus, the altered PHGDH activity restricts NAD level and compartmentally repressed NAD-dependent PARP1 activity for poly(ADP-ribosyl)ation of c-Jun, thereby leading to impaired c-Jun transcriptional activity linked to cell growth inhibition. Physiologically, nuclear PHGDH sustains tumour growth under nutrient stress, and the levels of PHGDH-Ser371 and PHGDH-Ser55 phosphorylation correlate with p38 and AMPK activity, respectively, in clinical human pancreatic cancer specimens. These findings illustrate a previously unidentified nutrient-sensing mechanism with the critical involvement of a non-canonical metabolic effect of PHGDH and underscore the functional importance of alternative PHGDH activity in tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s42255-021-00456-x | DOI Listing |
Biol Trace Elem Res
January 2025
Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Colorectal cancer (CRC) is the most common gastrointestinal malignancy, and 5-Fluorouracil (5-FU) is the principal chemotherapeutic drug used for its treatment. However, 5-FU resistance remains a significant challenge. Under stress conditions, tumor metabolic reprogramming influences 5-FU resistance.
View Article and Find Full Text PDFCell Oncol (Dordr)
December 2024
Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
Genes (Basel)
October 2024
INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France.
Background: Ulcerative colitis is a chronic inflammatory disease affecting the colon. During chronic inflammation of epithelial cells, lipid metabolism via pro-inflammatory eicosanoids is known to modify the immune response.
Methods: Starting from the Mammalian Metabolic Database, the expression of metabolic enzymes was investigated in two independent cohorts from transcriptome datasets GSE38713 and GSE11223, which analyzed ulcerative colitis tissue samples from the digestive tract.
Phytomedicine
January 2025
Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China. Electronic address:
Background: Lung metastasis is the leading cause of death in patients with osteosarcoma (OS), and new drugs are urgently needed. Epigenetic reprogramming is a recently proposed hallmark of malignancy; therefore, targeting epigenetic enzymes might provide a novel therapeutic strategy for OS lung metastasis. We recently reported that ailanthone (AIL), a natural product isolated from the Chinese medicinal plant Ailanthus altissima, inhibits OS cell growth and induces substantial metabolic changes; however, its direct targets remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!