The roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO, 21% O, 74% N) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523677PMC
http://dx.doi.org/10.1038/s41598-021-99922-5DOI Listing

Publication Analysis

Top Keywords

ventilatory responses
24
enos-/- mice
16
female mice
16
inspiratory expiratory
16
mice
14
male female
12
c57bl6 mice
12
minute ventilation
12
peak inspiratory
12
female
9

Similar Publications

Background: Little evidence is available about heart rate (HR) response to exercise as well as its relationship with functional capacity in amyloid cardiomyopathy. Then, in a multicentre cohort of patients with amyloid cardiomyopathy, we investigated the prevalence of chronotropic incompetence (CI) and its relationships with cardiopulmonary exercise testing (CPET) variables.

Methods: Data from 172 outpatients with amyloid cardiomyopathy who performed a maximal CPET and who had no significant rhythm disorders were analysed.

View Article and Find Full Text PDF

Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.

Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).

View Article and Find Full Text PDF

With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.

View Article and Find Full Text PDF

Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, heightened chemosensory discharges of the carotid body (CB), which contributes to potentiate the ventilatory hypoxic response and elicits hypertension. We aimed to determine: 1) whether the persistence of cardiorespiratory alterations found in long-term CIH depend on the inputs from the CB and, 2) in what extension the activation of glial cells and neuroinflammation in the caudal region of the nucleus of the Solitary Tract (NTS) requires functional CB chemosensory activity. To evaluate these hypotheses, we exposed male mice to CIH for 60 days.

View Article and Find Full Text PDF

The respiratory control system exhibits neural plasticity, adjusting future ventilatory responses based on experience. We tested the hypothesis that ventilatory long-term facilitation induced by hypercapnic acute intermittent hypoxia (AIH) at rest enhances subsequent ventilatory responses to steady-state exercise. Fourteen healthy adults (age = 27 ± 5 years; 7 males) participated in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!