Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523548 | PMC |
http://dx.doi.org/10.1038/s41419-021-04259-6 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland.
The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. Johns, NL A1B 3V6, Canada.
Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuromuscular Reference Center and Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China.
Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer's disease (AD) effect, the galactose-induced AD mice and naturally aging mice with AD were used to do drug efficacy evaluation. Furthermore, the Western blot, small interfering RNA (siRNA), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CESTA), liquid chromatography-tandem mass spectrometry (LC/MS-MS), adenosine 5'-monophosphate-activated protein kinase (AMPK) mutants and surface plasmon resonance (SPR) analysis were utilized to clarify the mechanism of action and identify target protein of this molecule.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Stomatology, The Fifth People's Hospital of Qinghai Province & Qinghai Cancer Hospital, Xining 810001, China.
Objective: To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/ pathway.
Methods: After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!