Sheared pulmonary artery catheter.

J Clin Anesth

Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue Box 604, Rochester, NY 14642, USA. Electronic address:

Published: August 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jclinane.2021.110554DOI Listing

Publication Analysis

Top Keywords

sheared pulmonary
4
pulmonary artery
4
artery catheter
4
sheared
1
artery
1
catheter
1

Similar Publications

Adoptive T-cell transfer has revolutionized the treatment of hematological malignancies. However, this approach has had very limited success in treating solid tumors, largely due to inadequate infiltration of vascularly administered T cells at tumor sites. The shear-resistant interaction between endothelial E-selectin and its cognate ligand expressed on leukocytes, sialyl Lewis X (sLe), is an essential prerequisite for extravasation of circulating leukocytes.

View Article and Find Full Text PDF

Impact of Vein Wall Hyperelasticity and Blood Flow Turbulence on Hemodynamic Parameters in the Inferior Vena Cava with a Filter.

Micromachines (Basel)

December 2024

Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).

View Article and Find Full Text PDF

Background: In adults the Ross procedure provides an excellent alternative to prosthetic valves, but it is underutilised because of concerns about technical complexity, durability, and perceived high late reoperation rates. The inclusion technique stabilizes the aortic root, prevents dilatation, and respects the dynamic root physiology. Long-term outcomes of the Ross procedure with the inclusion cylinder technique (1992-2022) are reported.

View Article and Find Full Text PDF

A multi-modal computational fluid dynamics model of left atrial fibrillation haemodynamics validated with 4D flow MRI.

Biomech Model Mechanobiol

January 2025

Laboratoire d'Imagerie Biomédicale (LIB), Institut National de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Sorbonne Université, Paris, France.

Atrial fibrillation (AF) is characterized by rapid and irregular contraction of the left atrium (LA). Impacting LA haemodynamics, this increases the risk of thrombi development and stroke. Flow conditions preceding stroke in these patients are not well defined, partly due the limited resolution of 4D flow magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

A Computational Fluid Dynamics Analysis of BiPAP Pressure Settings on Airway Biomechanics Using a CT-Based Respiratory Tract Model.

Respir Physiol Neurobiol

January 2025

School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia. Electronic address:

Central and Obstructive Sleep Apnea (CSA and OSA), Chronic Obstructive Pulmonary Disease (COPD), and Obesity Hypoventilation Syndrome (OHS) disrupt breathing patterns, posing significant health risks and reducing the quality of life. Bilevel Positive Airway Pressure (BiPAP) therapy offers adjustable inhalation and exhalation pressures, potentially enhancing treatment adaptability for the above diseases. This is the first-ever study that employs Computational Fluid Dynamics (CFD) to examine the biomechanical impacts of BiPAP under four settings: Inspiratory Positive Airway Pressure (IPAP)/Expiratory Positive Airway Pressure (EPAP) of 12/8, 16/6, and 18/8 cmHO, compared to a without-BiPAP scenario of zero-gauge pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!