A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sex affects the response of Wistar rats to polyvinyl pyrrolidone (PVP)-coated silver nanoparticles in an oral 28 days repeated dose toxicity study. | LitMetric

Background: Silver nanoparticles (AgNPs) are widely used in biomedicine due to their strong antimicrobial, antifungal, and antiviral activities. Concerns about their possible negative impacts on human and environmental health directed many researchers towards the assessment of the safety and toxicity of AgNPs in both in vitro and in vivo settings. A growing body of scientific information confirms that the biodistribution of AgNPs and their toxic effects vary depending on the particle size, coating, and dose as well as on the route of administration and duration of exposure. This study aimed to clarify the sex-related differences in the outcomes of oral 28 days repeated dose exposure to AgNPs.

Methods: Wistar rats of both sexes were gavaged daily using low doses (0.1 and 1 mg Ag/kg b.w.) of polyvinylpyrrolidone (PVP)-coated small-sized (10 nm) AgNPs. After exposure, blood and organs of all rats were analysed through biodistribution and accumulation of Ag, whereas the state of the liver and kidneys was evaluated by the levels of reactive oxygen species (ROS) and glutathione (GSH), catalase (CAT) activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), expression of metallothionein (Mt) genes and levels of Mt proteins.

Results: In all animals, changes in oxidative stress markers and blood parameters were observed indicating the toxicity of AgNPs applied orally even at low doses. Sex-related differences were noticed in all assessed parameters. While female rats eliminated AgNPs from the liver and kidneys more efficiently than males when treated with low doses, the opposite was observed for animals treated with higher doses of AgNPs. Female Wistar rats exposed to 1 mg PVP-coated AgNPs/kg b.w. accumulated two to three times more silver in the blood, liver, kidney and hearth than males, while the accumulation in most organs of digestive tract was more than ten times higher compared to males. Oxidative stress responses in the organs of males, except the liver of males treated with high doses, were less intense than in the organs of females. However, both Mt genes and Mt protein expression were significantly reduced after treatment in the liver and kidneys of males, while they remained unchanged in females.

Conclusions: Observed toxicity effects of AgNPs in Wistar rats revealed sex-related differences in response to an oral 28 days repeated exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522010PMC
http://dx.doi.org/10.1186/s12989-021-00425-yDOI Listing

Publication Analysis

Top Keywords

wistar rats
16
oral 28 days
12
28 days repeated
12
sex-related differences
12
low doses
12
liver kidneys
12
silver nanoparticles
8
repeated dose
8
agnps
8
toxicity agnps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!