Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Media use may influence metabolic syndrome (MetS) in children. Yet, longitudinal studies are scarce. This study aims to evaluate the longitudinal association of childhood digital media (DM) use trajectories with MetS and its components.
Methods: Children from Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain and Sweden participating in the IDEFICS/I.Family cohort were examined at baseline (W1: 2007/2008) and then followed-up at two examination waves (W2: 2009/2010 and W3: 2013/2014). DM use (hours/day) was calculated as sum of television viewing, computer/game console and internet use. MetS z-score was calculated as sum of age- and sex-specific z-scores of four components: waist circumference, blood pressure, dyslipidemia (mean of triglycerides and HDL-cholesterol) and homeostasis model assessment for insulin resistance (HOMA-IR). Unfavorable monitoring levels of MetS and its components were identified (cut-off: ≥ 90 percentile of each score). Children aged 2-16 years with ≥ 2 observations (W1/W2; W1/W3; W2/W3; W1/W2/W3) were eligible for the analysis. A two-step procedure was conducted: first, individual age-dependent DM trajectories were calculated using linear mixed regressions based on random intercept (hours/day) and linear slopes (hours/day/year) and used as exposure measures in association with MetS at a second step. Trajectories were further dichotomized if children increased their DM duration over time above or below the mean.
Results: 10,359 children and adolescents (20,075 total observations, 50.3% females, mean age = 7.9, SD = 2.7) were included. DM exposure increased as children grew older (from 2.2 h/day at 2 years to 4.2 h/day at 16 years). Estonian children showed the steepest DM increase; Spanish children the lowest. The prevalence of MetS at last follow-up was 5.5%. Increasing media use trajectories were positively associated with z-scores of MetS (slope: β = 0.54, 95%CI = 0.20-0.88; intercept: β = 0.07, 95%CI = 0.02-0.13), and its components after adjustment for puberty, diet and other confounders. Children with increasing DM trajectories above mean had a 30% higher risk of developing MetS (slope: OR = 1.30, 95%CI = 1.04-1.62). Boys developed steeper DM use trajectories and higher risk for MetS compared to girls.
Conclusions: Digital media use appears to be a risk factor for the development of MetS in children and adolescents. These results are of utmost importance for pediatricians and the development of health policies to prevent cardio-metabolic disorders later in life.
Trial Registration: ISRCTN, ISRCTN62310987 . Registered 23 February 2018- retrospectively registered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521295 | PMC |
http://dx.doi.org/10.1186/s12966-021-01186-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!