Objective: Motor vehicle crashes remain a significant problem. Advanced driver assistance systems (ADAS) have the potential to reduce crash incidence and severity, but their optimization requires a comprehensive understanding of driver-specific errors and environmental hazards in real-world crash scenarios. Therefore, the objectives of this study were to quantify contributing factors using the Strategic Highway Research Program 2 (SHRP 2) Naturalistic Driving Study (NDS), identify potential ADAS interventions, and make suggestions to optimize ADAS for real-world crash scenarios.

Methods: A subset of the SHRP 2 NDS consisting of at-fault crashes ( = 369) among teens (16-19 yrs), young adults (20-24 yrs), adults (35-54 yrs) and older adults (70+ yrs) were reviewed to identify contributing factors and potential ADAS interventions. Contributing factors were classified according to National Motor Vehicle Crash Causation Survey pre-crash assessment variable elements. A single critical factor was selected among the contributing factors for each crash. Case reviews with a multidisciplinary panel of industry experts were conducted to develop suggestions for ADAS optimization. Critical factors were compared across at-risk driving groups, gender, and incident type using chi-square statistics and multinomial logistic regression.

Results: Driver error was the critical factor in 94% of crashes. Recognition error (56%), including internal distraction and inadequate surveillance, was the most common driver error sub-type. Teens and young adults exhibited greater decision errors compared to older adults ( < 0.01). Older adults exhibited greater performance errors ( < 0.05) compared to teens and young adults. Automatic emergency braking (AEB) had the greatest potential to mitigate crashes (48%), followed by vehicle-to-vehicle communication (38%) and driver monitoring (24%). ADAS suggestions for optimization included (1) implementing adaptive forward collision warning, AEB, high-speed warning, and curve-speed warning to account for road surface conditions (2) ensuring detection of nonstandard road objects, (3) vehicle-to-vehicle communication alerting drivers to cross-traffic, (4) vehicle-to-infrastructure communication alerting drivers to the presence of pedestrians in crosswalks, and (5) optimizing lane keeping assist for end-departures and pedal confusion.

Conclusions: These data provide stakeholders with a comprehensive understanding of critical factors among at-risk drivers as well as suggestions for ADAS improvements based on naturalistic data. Such data can be used to optimize ADAS for driver-specific errors and help develop more robust vehicle test procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2021.1979529DOI Listing

Publication Analysis

Top Keywords

contributing factors
20
potential adas
12
adas interventions
12
factors potential
8
shrp naturalistic
8
naturalistic driving
8
driving study
8
motor vehicle
8
real-world crash
8
young adults
8

Similar Publications

Objective: Percutaneous Endoscopic Transforaminal Discectomy (PETD) is recognized as the leading surgical intervention for lumbar disc herniation (LDH). Moreover, Body Mass Index (BMI) has been established as an independent risk factor for disc reherniation post-PETD. Furthermore, there is a lack of studies investigating the biomechanical changes in the disc post-PETD in relation to diverse BMI levels.

View Article and Find Full Text PDF

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF

Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms.

BMC Plant Biol

December 2024

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains.

View Article and Find Full Text PDF

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF

Background & Aims: Surgery combined with chemotherapy remains the mainstay of treatment for advanced epithelial ovarian cancer. It is important to evaluate the occurrence of postoperative complications before operation and to prevent them. The purpose of this study is to investigate the role of sarcopenia diagnosed by CT scans in predicting postoperative complications in patients with ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!