Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Candida auris is a globally emerging multidrug-resistant fungal pathogen. Its pathogenicity-related signaling networks are largely unknown. Here, we characterized the pathobiological functions of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway in C. auris. We focused on adenylyl cyclase (), the PKA regulatory subunit (), and the PKA catalytic subunits ( and ). We concluded that PKA acts both dependently and independently of Cyr1 in C. auris. Tpk1 and Tpk2 have major and minor roles, respectively, in PKA activity and functions. Both Cyr1 and PKA promote growth, thermotolerance, filamentous growth, and resistance to stress and antifungal drugs by regulating expression of multiple effector genes. In addition, Cyr1 and PKA subunits were involved in disinfectant resistance of C. auris. However, deletion of both and generally resulted in more severe defects than deletion, indicating that Cyr1 and PKA play redundant and distinct roles. Notably, Tpk1 and Tpk2 have redundant but Cyr1-independent roles in haploid-to-diploid cell transition, which increases virulence of C. auris. However, Tpk1 and Tpk2 often play opposing roles in formation of biofilms and the cell wall components chitin and chitosan. Surprisingly, deletion of or , which resulted in severe growth defects at 37°C, did not attenuate virulence, and deletion reduced virulence of C. auris in a systemic murine infection model. In conclusion, this study provides comprehensive insights into the role of the cAMP/PKA pathway in drug resistance and pathogenicity of C. auris and suggests a potential therapeutic option for treatment of C. aurismediated candidemia. Despite the recently growing concern of pan-resistant Candida auris infection, the pathogenicity of this ascomycetous fungal pathogen and the signaling circuitries governing its resistance to antifungal drugs are largely unknown. Therefore, we analyzed the pathobiological functions of cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway in C. auris, which plays conserved roles in the growth and virulence of fungal pathogens. We show that adenylyl cyclase Cyr1 and PKA have pleiotropic roles in growth, morphogenesis, stress responses, antifungal drug and disinfectant resistance, and ploidy shifts of C. auris. Notably, however, we observed that the Δ Δ mutant generally exhibited more disrupted phenotypes than the Δ mutant, and we suggest Tpk1 and Tpk2 have both cAMP-dependent and -independent roles in this pathogen. Most surprisingly, we observed that hyperactivation, not inhibition, of the cAMP/PKA pathway reduced virulence of C. auris. Based on our results, we suggest and discuss potential therapeutic strategies for candidiasis caused by C. auris.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524339 | PMC |
http://dx.doi.org/10.1128/mBio.02729-21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!