Chemically modified chitin nanocrystals were synthesized by grafting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) onto chitin backbone via chlorination. Acetyl amino group was maintained in the reaction. The chemical structure and morphology of PHBV grafted chitin nanocrystals were characterized by Fourier transform infrared, Transmission electron microscopy and X-ray photoelectron spectroscopy. Contact angle measurement showed that the lipophilicity of chitin was improved by the surface modification. The effects of original chitin and PHBV-graft-chitin nanocrystals on the crystallizing and melting behavior of PHBV were studied by differential scanning calorimeter (DSC). The results indicated that both unmodified and modified chitin nanocrystals suppressed crystallization of PHBV. The melt point of PHBV was increased after being mixed with nanofillers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2011.08.066DOI Listing

Publication Analysis

Top Keywords

chitin nanocrystals
16
behavior phbv
8
modified chitin
8
chitin
7
phbv
6
nanocrystals grafted
4
grafted poly3-hydroxybutyrate-co-3-hydroxyvalerate
4
poly3-hydroxybutyrate-co-3-hydroxyvalerate effects
4
effects thermal
4
thermal behavior
4

Similar Publications

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

Background: Recently, silver nanoparticles (Ag-NPs) were shown to provoke oxidative stress through the release of reactive oxygen species and consequently induce cell damage. Selenium-loaded chitosan nanoparticles (CS-SeNPs) have anti-inflammatory and antioxidant effects, indicating that they ameliorate Ag-NPs-induced ovarian toxicity.

Objective: This study aimed to assess how well CS-SeNPs counteract the damaging effects of Ag-NPs on the ovarian tissue of adult female albino rats.

View Article and Find Full Text PDF

mRNA-based vaccines against the COVID-19 pandemic have propelled the use of nucleic acids for drug delivery. Conventional lipid-based carriers, such as liposomes and nanolipogels, effectively encapsulate and deliver RNA but are hindered by issues such as premature burst release and immunogenicity. To address these challenges, cell membrane-coated nanoparticles offer a promising alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!