UIr has been discussed as a rare example of a noncentrosymmetric, ferromagnetic superconductor crystallizing in the acentric PdBi structure type (2, 16). Here we present a new structure model for UIr. By means of single-crystal and powder X-ray diffraction we find UIr to crystallize in the symmetric space group 2/, in line with previous calculations. The discrepancy with the previous noncentrosymmetric model in space group 2 is explained by the occurrence of twinning. The observed twinning hints toward a high-temperature displacive phase transition of UIr to the CrB structure type (, 8): we discuss the lattice dynamics corresponding to this transition by crystallographic symmetry mode analysis and by density functional theory (DFT). We find that spin-orbit coupling is essential to understand this phase transition. We apply our theoretical considerations for a critical judgment of the structure models of UPt and NpIr that have been reported to crystallize isotypically with UIr. We confirm that UPt is isotypic to UIr (2/), whereas we predict NpIr to crystallize in the CrB structure type. Our report on the centrosymmetric crystal structure of UIr has an effect on all those theoretical models that investigated potentially novel superconducting coupling mechanisms of this compound on the basis of the noncentrosymmetric structure model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02578DOI Listing

Publication Analysis

Top Keywords

structure type
12
structure
8
crystal structure
8
lattice dynamics
8
uir
8
structure model
8
space group
8
phase transition
8
crb structure
8
dft-guided crystal
4

Similar Publications

Design of High-Temperature Superconducting Ternary Hydride NaY3H20 at Moderate Pressure via Introducing Hydrogen Vacancies.

Inorg Chem

January 2025

State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.

Superconducting hydrides exhibiting a high critical temperature () under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high- superconducting hydrides that can be stabilized at lower or even ambient pressures.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Mapping the landscape of Hospital at home (HaH) care: a validated taxonomy for HaH care model classification.

BMC Health Serv Res

January 2025

Institute Patient-Centered Digital Health, Bern University of Applied Sciences, Quellgasse 21, Biel, 2502, Switzerland.

Background: Hospital at home (HaH) care models have gained significant attention due to their potential to reduce healthcare costs, improve patient satisfaction, and lower readmission rates. However, the lack of a standardized classification system has hindered systematic evaluation and comparison of these models. Taxonomies serve as classification systems that simplify complexity and enhance understanding within a specific domain.

View Article and Find Full Text PDF

Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.

View Article and Find Full Text PDF

Smart Polymeric 3D Microscaffolds Hosting Spheroids for Neuronal Research via Quantum Metrology.

Adv Healthc Mater

January 2025

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.

Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!