Background And Aims: Surrogate endpoints that predict complications are necessary for assessment and approval of NASH therapies. We assessed associations between histologic and noninvasive tests (NITs) of fibrosis with liver-related complications in patients with NASH cirrhosis.

Approach And Results: Patients with compensated cirrhosis due to NASH were enrolled in two placebo-controlled trials of simtuzumab and selonsertib. Liver fibrosis at baseline and week 48 (W48) was staged by NASH Clinical Research Network (CRN) and Ishak classifications and a machine learning (ML) approach, hepatic collagen and alpha-smooth muscle actin (α-SMA) expression were quantified by morphometry, liver stiffness (LS) was measured by transient elastography, and serum NITs (enhanced liver fibrosis [ELF], NAFLD fibrosis score [NFS], and Fibrosis-4 index [FIB-4]) were calculated. Cox regression determined associations between these parameters at baseline and their changes over time with adjudicated liver-related clinical events. Among 1,135 patients, 709 (62%) had Ishak stage 6 fibrosis, and median ELF and LS were 10.66 and 21.1 kPa, respectively. During a median follow-up of 16.6 months, 71 (6.3%) had a liver-related event; associated baseline factors included Ishak stage 6 fibrosis, and higher hepatic collagen, α-SMA expression, ML-based fibrosis parameters, LS, ELF, NFS, and FIB-4. Cirrhosis regression observed in 16% (176/1,135) between BL and W48 was associated with a lower risk of events versus nonregression (1.1% [2/176] vs. 7.2% [69/957]; HR, 0.16; 95% CI, 0.04, 0.65 [p = 0.0104]). Conversely, after adjustment for baseline values, increases in hepatic collagen, α-SMA, ML-based fibrosis parameters, NFS, and LS were associated with an increased risk of events.

Conclusions: In patients with compensated cirrhosis due to NASH, regression of fibrosis is associated with a reduction in liver-related complications. These data support the utility of histologic fibrosis regression and NITs as clinical trial endpoints for NASH cirrhosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303958PMC
http://dx.doi.org/10.1002/hep.32204DOI Listing

Publication Analysis

Top Keywords

hepatic collagen
12
fibrosis
10
cirrhosis regression
8
liver-related complications
8
patients compensated
8
compensated cirrhosis
8
cirrhosis nash
8
liver fibrosis
8
α-sma expression
8
ishak stage
8

Similar Publications

Targeting p97/Valosin-Containing Protein Promotes Hepatic Stellate Cell Senescence and Mitigates Liver Fibrosis.

DNA Cell Biol

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.

Liver fibrosis, one of the main histological determinants of various chronic liver diseases, currently lacks effective treatment. Hepatic stellate cells (HSCs) are pivotal in the production of extracellular matrix and amplify the fibrogenic response. Inhibiting the activation of HSCs or promoting the senescence of activated HSCs is crucial for the regression of liver fibrosis.

View Article and Find Full Text PDF

In this chapter, we present a detailed protocol for establishing a three-dimensional (3D) multicellular tumor spheroids (MCTSs) model to simulate the tumor microenvironment (ME) associated with metabolic dysfunction-associated steatotic liver disease (MASLD) for the study of hepatocellular carcinoma (HCC) and colorectal cancer (CRC) cell aggressiveness, growth, and metastasis potential. The MASLD microenvironment (MASLD-ME) is recreated by embedding hepatic stellate cells in a collagen I matrix within a Boyden chamber system. The metabolic medium mimics MASLD conditions, enriched with high glucose, fructose, insulin, and fatty acids, to simulate metabolic stresses associated with the disease.

View Article and Find Full Text PDF

A Single-Chain Peptide Probe Targeting Pathological Collagen for Precise Staging of Hepatic Fibrosis by MR Imaging.

Anal Chem

January 2025

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

Hepatic fibrosis, a chronic liver response to injury with potential severe outcomes like cirrhosis and liver cancer, necessitates urgent noninvasive diagnostic techniques to halt disease progression. We herein for the first time developed a single-chain peptide probe targeting pathological collagen for in vivo magnetic resonance imaging (MRI) of hepatic fibrosis. The novel (GhypO) probe, distinguished by its unique monomeric conformation achieved through Pro to (2,4)-hydroxyproline (hyp) substitution and subsequent disruption of hydrogen bonding, exhibits selectivity for pathological collagen over its intact counterpart in connective tissues.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of a potent and orally bioavailable FGFRs inhibitor for fibrotic treatment.

Eur J Med Chem

January 2025

Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Organ fibrosis, such as lung fibrosis and liver fibrosis, is a progressive and fatal disease. Fibroblast growth factor receptors (FGFRs) play an important role in the development and progression of fibrosis. Through scaffold hopping, bioisosteric replacement design, and structure-activity relationship optimization, we developed a series of highly potent FGFRs inhibitors, and the indazole-containing candidate compound A16 showed potent kinase activity comparable to that of AZD4547.

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!