The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp), and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the mutant when heme, vitamin B, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth . Genetic complementation of the mutant with the gene restored growth on these substrates. The , , and single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the double mutant strain, which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The , , and mutants did not significantly affect intestinal colonization. Moreover, the survival of the mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival . The genetic organization of , , and gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space-in contrast to an oxidative environment in aerobes-it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788773PMC
http://dx.doi.org/10.1128/IAI.00469-21DOI Listing

Publication Analysis

Top Keywords

intestinal colonization
16
growth defect
12
bacteroides fragilis
8
essential survival
8
intra-abdominal infection
8
intestinal tract
8
outer membrane
8
compared parent
8
parent strain
8
mutant strain
8

Similar Publications

Intestinal aging is characterized by declining protein homeostasis via reduced proteasome activity, which are hallmarks of age-related diseases. Our previous study showed that caffeine intake improved intestinal integrity with age by reducing vitellogenin (VIT, yolk protein) in . In this study, we investigated the regulatory mechanisms by which caffeine intake improves intestinal integrity and reduces vitellogenin (VIT) production in aged .

View Article and Find Full Text PDF

/ Infection: Is It Still a Concern?

Microorganisms

December 2024

Pediatric Infectious Disease Unit, Barilla Children's Hospital of Parma, 43126 Parma, Italy.

Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of / infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations.

View Article and Find Full Text PDF

Genetic Characterization, Transmission Pattern and Health Risk Analysis of Intestinal Colonization ESBL-Producing in Vegetable Farming Population.

Microorganisms

December 2024

Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

The surging prevalence rates of ESBL-producing (ESBL-Ec) pose a serious threat to public health. To date, most research on drug-resistant bacteria and genes has focused on livestock and poultry breeding areas, hospital clinical areas, natural water environments, and wastewater treatment plants. However, few studies have been conducted on drug-resistant bacteria in vegetable cultivation.

View Article and Find Full Text PDF

Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models.

Microorganisms

December 2024

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China.

Enterotoxigenic (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure.

View Article and Find Full Text PDF

Insights into Within-Host Evolution and Dynamics of Oral and Intestinal Streptococci Unveil Niche Adaptation.

Int J Mol Sci

December 2024

Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany.

The oral-gut axis is a complex system linking the oral cavity and gastrointestinal tract, impacting host health and microbial composition. This study investigates genetic changes and adaptive mechanisms employed by streptococci-one of the few genera capable of colonizing oral and intestinal niches-within the same individual. We conducted whole-genome sequencing (WGS) on 218 streptococcal isolates from saliva and fecal samples of 14 inflammatory bowel disease (IBD) patients and 12 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!