Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date.

Mol Diagn Ther

Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.

Published: November 2021

Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40291-021-00558-yDOI Listing

Publication Analysis

Top Keywords

inherited retinal
8
gene supplementation
8
clinical trial
8
molecular therapy
4
choroideremia
4
therapy choroideremia
4
choroideremia pre-clinical
4
clinical
4
pre-clinical clinical
4
clinical progress
4

Similar Publications

Integration of multiomic data identifies core-module of inherited-retinal diseases.

Hum Mol Genet

January 2025

Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030  United States.

Human diseases with similar phenotypes can be interconnected through shared biological pathways, genes, or molecular mechanisms. Inherited retinal diseases (IRDs) cause photoreceptor dysfunction due to mutations in approximately 300 genes, affecting visual transduction, photoreceptor morphogenesis, and transcription factors, suggesting common pathobiological mechanisms. This study examined the functional relationship between known IRDs genes by integrating binding sites and gene expression data from the key photoreceptor transcription factors (TFs), Crx and Nrl.

View Article and Find Full Text PDF

Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).

View Article and Find Full Text PDF

: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. : This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs.

View Article and Find Full Text PDF

Immaturities exist at multiple levels of the developing human visual pathway, starting with immaturities in photon efficiency and spatial sampling in the retina and on through immaturities in early and later stages of cortical processing. Here we use Steady-State Visual Evoked Potentials (SSVEPs) and controlled visual stimuli to determine the degree to which sensitivity to horizontal retinal disparity is limited by the visibility of the monocular half-images, the ability to encode absolute disparity or the ability to encode relative disparity. Responses were recorded from male and female human participants at average ages of 5.

View Article and Find Full Text PDF

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!