Tail bleeding models are important tools in hemophilia research, specifically for the assessment of procoagulant effects. The tail vein transection (TVT) survival model has been preferred in many settings due to sensitivity to clinically relevant doses of FVIII, whereas other established models, such as the tail clip model, require higher levels of procoagulant compounds. To avoid using survival as an endpoint, we developed a TVT model establishing blood loss and bleeding time as endpoints and full anesthesia during the entire experiment. Briefly, anesthetized mice are positioned with the tail submerged in temperate saline (37°C) and dosed with the test compound in the right lateral tail vein. After 5 min, the left lateral tail vein is transected using a template guide, the tail is returned to the saline, and all bleeding episodes are monitored and recorded for 40 min while collecting the blood. If no bleeding occurs at 10 min, 20 min, or 30 min post-injury, the clot is challenged gently by wiping the cut twice with a wet gauze swab. After 40 min, blood loss is quantified by the amount of hemoglobin bled into the saline. This fast and relatively simple procedure results in consistent and reproducible bleeds. Compared to the TVT survival model, it uses a more humane procedure without compromising sensitivity to pharmacological intervention. Furthermore, it is possible to use both genders, reducing the total number of animals that need to be bred, in adherence with the principles of 3R's. A potential limitation in bleeding models is the stochastic nature of hemostasis, which can reduce the reproducibility of the model. To counter this, manual clot disruption ensures that the clot is challenged during monitoring, preventing primary (platelet) hemostasis from stopping bleeding. This addition to the catalog of bleeding injury models provides an option to characterize procoagulant effects in a standardized and humane manner.

Download full-text PDF

Source
http://dx.doi.org/10.3791/62952DOI Listing

Publication Analysis

Top Keywords

tail vein
16
tail
8
vein transection
8
bleeding
8
bleeding models
8
procoagulant effects
8
tvt survival
8
survival model
8
blood loss
8
lateral tail
8

Similar Publications

Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.

View Article and Find Full Text PDF

Background: Sepsis is a severe condition causing organ failure due to an abnormal immune reaction to infection, characterized by ongoing excessive inflammation and immune system issues. Osteopontin (OPN) is secreted by various cells and plays a crucial role in inflammatory responses and immune regulation. Nonetheless, the precise function of OPN in sepsis remains to be elucidated.

View Article and Find Full Text PDF

Regulation of Concanavalin A-induced Immune Hepatitis in Mice by Dihydromyricetin at the M1/M2 Type Macrophage Level.

Discov Med

January 2025

Department of General Surgery, Section for Day Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 610031 Chengdu, Sichuan, China.

Background: Autoimmune hepatitis (AIH) is an autoimmune disease accompanied by an autoimmune inflammatory response that often leads to severe liver damage. In addition, it may further lead to complications such as liver fibrosis, cirrhosis and liver failure. Dihydromyricetin (DHM) possesses various pharmacological properties, such as being anti-inflammatory, antioxidant, and antibacterial.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!