Mechanism of cargo sorting into small extracellular vesicles.

Bioengineered

Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.

Published: December 2021

Extracellular vesicles (EVs) are special membranous structures released by almost every cell type that carry and protect some biomolecules from being degraded. They transport important signaling molecules involved in cell communication, migration, and numerous physiological processes. EVs can be categorized into two main types according to their size: i) small extracellular vesicles (sEVs), such as exosomes (30-150 nm), released from the fusion of multivesicular bodies (MVBs) with the plasma membrane, and ii) large EVs, such as microvesicles (100-1000 nm). These are no longer considered a waste product of cells, but regulators of intercellular communication, as they can transport specific repertoires of cargos, such as proteins, lipids, and nucleic acids to receptor cells to achieve cell-to-cell communication. This indicates the existence of different mechanisms, which controls the cargos sorting into EVs. This review mainly gives a description about the biological roles of the cargo and the sorting mechanisms of sEVs, especially exosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806638PMC
http://dx.doi.org/10.1080/21655979.2021.1977767DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
cargo sorting
8
small extracellular
8
sevs exosomes
8
mechanism cargo
4
sorting small
4
vesicles extracellular
4
evs
4
vesicles evs
4
evs special
4

Similar Publications

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.

View Article and Find Full Text PDF

Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!