Engineering of Human Lactoferrin for Improved Anticancer Activity.

ACS Pharmacol Transl Sci

Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.

Published: October 2021

Protease-digested lactoferrin fragments often exhibit improved therapeutic properties. However, there are limited studies investigating the anticancer properties of these fragments. The fragment with improved anticancer activities is an attractive alternative to chemotherapeutic drugs-presenting severe side effects. Herein, we report the isolation and characterization of recombinant engineered-lactoferrin (rtHLF4), exhibiting up to 100-fold improved anticancer activity compared to the full-length lactoferrin (flHLF). Further, rtHLF4 exerts its anticancer effect in a shorter duration. Through transcriptomic analysis of various cancer biomarkers, rtHLF4 was found to upregulate various pro-apoptotic markers and downregulate signaling proteins involved in angiogenesis and metastasis. We further determined that rtHLF4 showed no hemolytic activity at high concentrations. We believe that this anticancer protein can be further developed as a cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8506613PMC
http://dx.doi.org/10.1021/acsptsci.1c00134DOI Listing

Publication Analysis

Top Keywords

improved anticancer
12
anticancer activity
8
anticancer
6
engineering human
4
human lactoferrin
4
improved
4
lactoferrin improved
4
activity protease-digested
4
protease-digested lactoferrin
4
lactoferrin fragments
4

Similar Publications

Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

Background/objectives: Although extemporaneous formulations of anticancer drug products for personalized therapy are produced according to Good Hospital Pharmacy Manufacturing Practice, the lack of knowledge about drug stability under clinical conditions limits the second-time use of these highly costly medications in clinical practice. Therefore, the residual compounded drugs are considered waste and a cost item that negatively affects the healthcare system. In the context of the ever-increasing interest of the health system in applying practices in line with personalized medicine and spending review policies, this research aimed to demonstrate the feasibility of incorporating analytical techniques into daily routine practice.

View Article and Find Full Text PDF

Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery.

Pharmaceutics

January 2025

Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.

Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.

View Article and Find Full Text PDF

Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms.

Pharmaceutics

January 2025

State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.

Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!