Green and Efficient Extraction Approach for Polyphenol Recovery from Lotus Seedpods (Receptaculum Nelumbinis): Gas-Assisted Combined with Glycerol.

ACS Omega

College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058 Zhejiang, China.

Published: October 2021

In this paper, the gas-assisted combined with glycerol extraction (GAGE) for polyphenol recovery from lotus seedpods (LSPs) was modeled and optimized. Box-Behnken design was applied to optimize the total polyphenol content (TPC) of LSP along with enhancing antioxidant activities using response surface methodology based on the TPC extraction yield (%), which was affected by glycerol concentration, time, temperature, and glycerol-to-solid ratio. The optimal conditions for the LSP extract were glycerol-to-solid ratio, 42 mL/g; time, 50 min; concentration of glycerol, 45%; and temperature, 70 °C. Ultra-high-pressure liquid chromatography integrated with triple-time-of-flight mass spectrophotometry (UPLC-Triple-TOF/MS) analysis revealed nine biologically active polyphenols. Furthermore, Fourier-transform infrared spectroscopy and scanning electron microscopy results demonstrated the effect and influence during extraction. The findings suggested that GAGE is a potential, green, and high-efficiency alternative that could be used to recover polyphenols from plant source byproducts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515820PMC
http://dx.doi.org/10.1021/acsomega.1c04190DOI Listing

Publication Analysis

Top Keywords

polyphenol recovery
8
recovery lotus
8
lotus seedpods
8
gas-assisted combined
8
combined glycerol
8
glycerol-to-solid ratio
8
green efficient
4
extraction
4
efficient extraction
4
extraction approach
4

Similar Publications

The valorization of grape pomace from Montepulciano winemaking: A new source of functional ingredients for sustainable food industry.

Food Res Int

January 2025

Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy; Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy. Electronic address:

The winemaking process generates huge amounts of waste every year. Fermented grape pomace, the major by-waste product, holds significant value due to its chemical composition and technological properties. In this study a multi-omics approach was employed for the detailed molecular characterization of fermented grape pomace from Montepulciano grape, a widely used Italian red grape variety.

View Article and Find Full Text PDF

Background/objectives: Nowadays, sustainability efforts focus on extracting natural cosmeceutical ingredients, such as polyphenols, from agri-food waste, for example, black bentonite (BB). The aims of this work were to validate an antioxidant cosmetic ingredient obtained from the waste BB and embed it into an ad hoc designed oromucosal spray intended for oral cavity wellness.

Methods: Focusing on sustainability, the study tested PEG200, propylene glycol, and their mixtures as unconventional and green extraction solvents, aligned with a waste-to-market approach.

View Article and Find Full Text PDF

Transient ischemic attack (TIA) is a well-established risk factor for future strokes, making interventions that target recovery and vascular risk crucial. This study aimed to assess the safety and clinical effects of a polyphenol-rich extract in post-TIA patients. A randomized, triple-blind, placebo-controlled trial was conducted with participants who had a history of TIA or minor stroke and who received 1 g of Salicornia extract or placebo over 11 months.

View Article and Find Full Text PDF

The polyphenol extraction and evolution during a traditional 14-day fermentation of the Aglianico red grape, a variety widely cultivated across Southern Italy, was for the first time investigated, with the purpose of optimizing the phenolic profile in finished wines. Anthocyanins, BSA-reactive tannins, iron-reactive phenols, and vanillin-reactive flavans (VRFs) were analyzed in the free-run must, pressed pomace liquid, and in pomace extracts at different maceration times. Experimental evidence suggested that, instead of the typical 14-day maceration of Aglianico grapes, it is recommendable to choose an 11-day maceration in order to prevent the over-extraction of polyphenols that may detrimentally affect the sensory characteristics of wines.

View Article and Find Full Text PDF

Grape pomace, the solid residue from winemaking, is a rich source of polyphenolic compounds with significant antioxidant properties. However, the efficient extraction of these valuable compounds remains a challenge. This study focuses on optimizing the conditions for the enzyme-assisted extraction of polyphenolic compounds from red grape pomace using cellulase, hemicellulase, and pectinase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!