The development of broad-spectrum ultraviolet- and visible-light photocatalysts constitutes one of the most significant challenges in the field of photocatalytic pollutant removal. Here, the efficiency of the directly prepared nitrogen-doped quantum zeolitic imidazolate framework (ZIF)-8-dot catalyst for the photocatalytic degradation of the methylene blue dye was reported. The prepared catalysts were characterized using Brunauer-Emmett-Teller, X-ray diffraction, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy techniques. Under sunlight irradiation, the 1% nitrogen-doped quantum-ZIF-8-dot catalyst showed 75% photodegradation in half an hour and ≈93% photodegradation after 3 hours compared to ≈87% for the ZIF-8 metal-organic framework. The high performance of the 1% nitrogen-doped quantum-ZIF-8-dot catalyst was attributed to the synergism between the catalyst components, upconverted fluorescence property of nitrogen-doped quantum dots, and charge (electrons-holes) separation. The reactive radical test revealed that the hydroxyl radical was dominant. The step-scheme heterojunction mechanism for photocatalytic degradation was also deduced. The kinetic study through the photocatalytic isotherms revealed that the pseudo-first-order kinetic model can describe the reaction mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515569 | PMC |
http://dx.doi.org/10.1021/acsomega.1c03195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!