Tenascin-C is upregulated during inflammation and tumorigenesis, and its expression level is correlated with a poor prognosis in several malignancies. Nevertheless, the substantial role of tenascin-C in cancer progression is poorly understood. Previously, we found that a peptide derived from tenascin-C, termed TNIIIA2, acts directly on tumor cells to activate β1-integrin and induce malignant progression. Here, we show that β1-integrin activation by TNIIIA2 in human fibroblasts indirectly contributes to cancer progression through the induction of cellular senescence. Prolonged treatment of fibroblasts with TNIIIA2 induced cellular senescence, as characterized by the suppression of cell growth and the induction of senescence-associated-β-galactosidase and p16 expression. The production of reactive oxygen species and subsequent DNA damage were responsible for the TNIIIA2-induced senescence of fibroblasts. Interestingly, peptide FNIII14, which inactivates β1-integrin, inhibited fibroblast senescence induced not only by TNIIIA2 but also by HO, suggesting that β1-integrin activation plays a critical role in the induction of senescence in fibroblasts. Moreover, TNIIIA2-induced senescent fibroblasts secreted heparin-binding epidermal growth factor-like growth factor (HB-EGF), which caused preneoplastic epithelial HaCaT cells to acquire malignant properties, including colony-forming and focus-forming abilities. Thus, our study demonstrates that tenascin-C-derived peptide TNIIIA2 induces cellular senescence in fibroblasts through β1-integrin activation, causing cancer progression via the secretion of humoral factors such as HB-EGF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493383PMC

Publication Analysis

Top Keywords

cellular senescence
16
senescence fibroblasts
16
β1-integrin activation
16
cancer progression
12
induction cellular
8
fibroblasts β1-integrin
8
tenascin-c-derived peptide
8
senescence
7
fibroblasts
7
β1-integrin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!