Non-small cell lung cancer (NSCLC) is a malignant tumor that accounts for the most new cancer cases and cancer-related deaths worldwide, and the proliferation and metastasis of NSCLC are the main reasons for treatment failure and patient death. Traditional chemotherapeutic drugs have low selectivity, which can kill cancer cells and cause damage to normal cells at the same time. Therefore, it is particularly important to study therapies that target cancer cells and to find low-toxicity, high-efficiency anticancer drugs. Cyy260 is a novel small molecule inhibitor that we synthesized for the first time. Here, we investigated the and antitumor activities of Cyy260 and explored the underlying mechanisms in NSCLC. Cyy260 had a concentration- and time-dependent inhibitory effect on NSCLC cells, but it was less toxic to normal cells. Cyy260 regulated apoptosis through intracellular and extracellular apoptotic pathways. In addition, Cyy260 could also induce cell cycle arrest, thereby inhibiting cell proliferation. Further analysis of molecular mechanisms showed that the JAK2/STAT3 signaling pathway was involved in the antitumor effect mediated by Cyy260. Analysis of subcutaneously transplanted tumors in mice showed that Cyy260 suppressed tumor growth . Our results proved that Cyy260 is a novel inhibitor of the JAK2/STAT3 pathway thus may have potential in therapy of NSCLC and other cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493399 | PMC |
Am J Cancer Res
September 2021
The First Affiliated Hospital, Wenzhou Medical University Wenzhou 325000, Zhejiang, China.
Non-small cell lung cancer (NSCLC) is a malignant tumor that accounts for the most new cancer cases and cancer-related deaths worldwide, and the proliferation and metastasis of NSCLC are the main reasons for treatment failure and patient death. Traditional chemotherapeutic drugs have low selectivity, which can kill cancer cells and cause damage to normal cells at the same time. Therefore, it is particularly important to study therapies that target cancer cells and to find low-toxicity, high-efficiency anticancer drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!